//------------------------------------------------------------------------------
// File: WXUtil.cpp
//
// Desc: DirectShow base classes - implements helper classes for building
//       multimedia filters.
//
// Copyright (c) 1992-2001 Microsoft Corporation.  All rights reserved.
//------------------------------------------------------------------------------
 
 
#include "streams.h"
#define STRSAFE_NO_DEPRECATE
#include <strsafe.h>
#include <process.h> //MPC-BE patch
 
 
// --- CAMEvent -----------------------
CAMEvent::CAMEvent(BOOL fManualReset, __inout_opt HRESULT *phr)
{
    m_hEvent = CreateEvent(NULL, fManualReset, FALSE, NULL);
    if (NULL == m_hEvent) {
        if (NULL != phr && SUCCEEDED(*phr)) {
            *phr = E_OUTOFMEMORY;
        }
    }
}
 
CAMEvent::CAMEvent(__inout_opt HRESULT *phr)
{
    m_hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
    if (NULL == m_hEvent) {
        if (NULL != phr && SUCCEEDED(*phr)) {
            *phr = E_OUTOFMEMORY;
        }
    }
}
 
CAMEvent::~CAMEvent()
{
    if (m_hEvent) {
	EXECUTE_ASSERT(CloseHandle(m_hEvent));
    }
}
 
 
// --- CAMMsgEvent -----------------------
// One routine.  The rest is handled in CAMEvent
 
CAMMsgEvent::CAMMsgEvent(__inout_opt HRESULT *phr) : CAMEvent(FALSE, phr)
{
}
 
BOOL CAMMsgEvent::WaitMsg(DWORD dwTimeout)
{
    // wait for the event to be signalled, or for the
    // timeout (in MS) to expire.  allow SENT messages
    // to be processed while we wait
    DWORD dwWait;
	DWORD dwStartTime = 0;
 
    // set the waiting period.
    DWORD dwWaitTime = dwTimeout;
 
    // the timeout will eventually run down as we iterate
    // processing messages.  grab the start time so that
    // we can calculate elapsed times.
    if (dwWaitTime != INFINITE) {
        dwStartTime = timeGetTime();
    }
 
    do {
        dwWait = MsgWaitForMultipleObjects(1,&m_hEvent,FALSE, dwWaitTime, QS_SENDMESSAGE);
        if (dwWait == WAIT_OBJECT_0 + 1) {
	    MSG Message;
            PeekMessage(&Message,NULL,0,0,PM_NOREMOVE);
 
	    // If we have an explicit length of time to wait calculate
	    // the next wake up point - which might be now.
	    // If dwTimeout is INFINITE, it stays INFINITE
	    if (dwWaitTime != INFINITE) {
 
		DWORD dwElapsed = timeGetTime()-dwStartTime;
 
		dwWaitTime =
		    (dwElapsed >= dwTimeout)
			? 0  // wake up with WAIT_TIMEOUT
			: dwTimeout-dwElapsed;
	    }
        }
    } while (dwWait == WAIT_OBJECT_0 + 1);
 
    // return TRUE if we woke on the event handle,
    //        FALSE if we timed out.
    return (dwWait == WAIT_OBJECT_0);
}
 
// --- CAMThread ----------------------
 
 
CAMThread::CAMThread(__inout_opt HRESULT *phr)
    : m_EventSend(TRUE, phr),     // must be manual-reset for CheckRequest()
      m_EventComplete(FALSE, phr)
{
    m_hThread = NULL;
}
 
CAMThread::~CAMThread() {
    Close();
}
 
 
// when the thread starts, it calls this function. We unwrap the 'this'
//pointer and call ThreadProc.
unsigned int WINAPI //MPC-BE patch
CAMThread::InitialThreadProc(__inout LPVOID pv)
{
    HRESULT hrCoInit = CAMThread::CoInitializeHelper();
    if(FAILED(hrCoInit)) {
        DbgLog((LOG_ERROR, 1, TEXT("CoInitializeEx failed.")));
    }
 
    CAMThread * pThread = (CAMThread *) pv;
 
    HRESULT hr = pThread->ThreadProc();
 
    if(SUCCEEDED(hrCoInit)) {
        CoUninitialize();
    }
 
    return hr;
}
 
BOOL
CAMThread::Create()
{
    CAutoLock lock(&m_AccessLock);
 
    if (ThreadExists()) {
	return FALSE;
    }
 
	//MPC-BE patch
	m_hThread = (HANDLE)_beginthreadex( NULL,						 /* Security */
										0,							/* Stack Size */
										CAMThread::InitialThreadProc, /* Thread process */
										(LPVOID)this,				 /* Arguments */
										0,							/* 0 = Start Immediately */
										NULL						  /* Thread Address */
										);
 
    if (!m_hThread) {
	return FALSE;
    }
 
    return TRUE;
}
 
DWORD
CAMThread::CallWorker(DWORD dwParam)
{
    // lock access to the worker thread for scope of this object
    CAutoLock lock(&m_AccessLock);
 
    if (!ThreadExists()) {
	return (DWORD) E_FAIL;
    }
 
    // set the parameter
    m_dwParam = dwParam;
 
    // signal the worker thread
    m_EventSend.Set();
 
    // wait for the completion to be signalled
    m_EventComplete.Wait();
 
    // done - this is the thread's return value
    return m_dwReturnVal;
}
 
// Wait for a request from the client
DWORD
CAMThread::GetRequest()
{
    m_EventSend.Wait();
    return m_dwParam;
}
 
// is there a request?
BOOL
CAMThread::CheckRequest(__out_opt DWORD * pParam)
{
    if (!m_EventSend.Check()) {
	return FALSE;
    } else {
	if (pParam) {
	    *pParam = m_dwParam;
	}
	return TRUE;
    }
}
 
// reply to the request
void
CAMThread::Reply(DWORD dw)
{
    m_dwReturnVal = dw;
 
    // The request is now complete so CheckRequest should fail from
    // now on
    //
    // This event should be reset BEFORE we signal the client or
    // the client may Set it before we reset it and we'll then
    // reset it (!)
 
    m_EventSend.Reset();
 
    // Tell the client we're finished
 
    m_EventComplete.Set();
}
 
HRESULT CAMThread::CoInitializeHelper()
{
    // call CoInitializeEx and tell OLE not to create a window (this
    // thread probably won't dispatch messages and will hang on
    // broadcast msgs o/w).
    //
    // If CoInitEx is not available, threads that don't call CoCreate
    // aren't affected. Threads that do will have to handle the
    // failure. Perhaps we should fall back to CoInitialize and risk
    // hanging?
    //
 
    // older versions of ole32.dll don't have CoInitializeEx
 
    HRESULT hr = E_FAIL;
    HINSTANCE hOle = GetModuleHandle(TEXT("ole32.dll"));
    if(hOle)
    {
        typedef HRESULT (STDAPICALLTYPE *PCoInitializeEx)(
            LPVOID pvReserved, DWORD dwCoInit);
        PCoInitializeEx pCoInitializeEx =
            (PCoInitializeEx)(GetProcAddress(hOle, "CoInitializeEx"));
        if(pCoInitializeEx)
        {
            hr = (*pCoInitializeEx)(0, COINIT_DISABLE_OLE1DDE );
        }
    }
    else
    {
        // caller must load ole32.dll
        DbgBreak("couldn't locate ole32.dll");
    }
 
    return hr;
}
 
 
// destructor for CMsgThread  - cleans up any messages left in the
// queue when the thread exited
CMsgThread::~CMsgThread()
{
    if (m_hThread != NULL) {
        WaitForSingleObject(m_hThread, INFINITE);
        EXECUTE_ASSERT(CloseHandle(m_hThread));
    }
 
    POSITION pos = m_ThreadQueue.GetHeadPosition();
    while (pos) {
        CMsg * pMsg = m_ThreadQueue.GetNext(pos);
        delete pMsg;
    }
    m_ThreadQueue.RemoveAll();
 
    if (m_hSem != NULL) {
        EXECUTE_ASSERT(CloseHandle(m_hSem));
    }
}
 
BOOL
CMsgThread::CreateThread(
    )
{
    m_hSem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL);
    if (m_hSem == NULL) {
        return FALSE;
    }
 
    m_hThread = ::CreateThread(NULL, 0, DefaultThreadProc,
			       (LPVOID)this, 0, &m_ThreadId);
    return m_hThread != NULL;
}
 
 
// This is the threads message pump.  Here we get and dispatch messages to
// clients thread proc until the client refuses to process a message.
// The client returns a non-zero value to stop the message pump, this
// value becomes the threads exit code.
 
DWORD WINAPI
CMsgThread::DefaultThreadProc(
    __inout LPVOID lpParam
    )
{
    CMsgThread *lpThis = (CMsgThread *)lpParam;
    CMsg msg;
    LRESULT lResult;
 
    // !!!
    CoInitialize(NULL);
 
    // allow a derived class to handle thread startup
    lpThis->OnThreadInit();
 
    do {
	lpThis->GetThreadMsg(&msg);
	lResult = lpThis->ThreadMessageProc(msg.uMsg,msg.dwFlags,
					    msg.lpParam, msg.pEvent);
    } while (lResult == 0L);
 
    // !!!
    CoUninitialize();
 
    return (DWORD)lResult;
}
 
 
// Block until the next message is placed on the list m_ThreadQueue.
// copies the message to the message pointed to by *pmsg
void
CMsgThread::GetThreadMsg(__out CMsg *msg)
{
    CMsg * pmsg = NULL;
 
    // keep trying until a message appears
    for (;;) {
        {
            CAutoLock lck(&m_Lock);
            pmsg = m_ThreadQueue.RemoveHead();
            if (pmsg == NULL) {
                m_lWaiting++;
            } else {
                break;
            }
        }
        // the semaphore will be signaled when it is non-empty
        WaitForSingleObject(m_hSem, INFINITE);
    }
    // copy fields to caller's CMsg
    *msg = *pmsg;
 
    // this CMsg was allocated by the 'new' in PutThreadMsg
    delete pmsg;
 
}
 
// Helper function - convert int to WSTR
void WINAPI IntToWstr(int i, __out_ecount(12) LPWSTR wstr)
{
#ifdef UNICODE
    if (FAILED(StringCchPrintf(wstr, 12, L"%d", i))) {
        wstr[0] = 0;
    }
#else
    TCHAR temp[12];
    if (FAILED(StringCchPrintf(temp, NUMELMS(temp), "%d", i))) {
        wstr[0] = 0;
    } else {
        MultiByteToWideChar(CP_ACP, 0, temp, -1, wstr, 12);
    }
#endif
} // IntToWstr
 
 
#define MEMORY_ALIGNMENT        4
#define MEMORY_ALIGNMENT_LOG2   2
#define MEMORY_ALIGNMENT_MASK   MEMORY_ALIGNMENT - 1
 
void * __stdcall memmoveInternal(void * dst, const void * src, size_t count)
{
    void * ret = dst;
 
#ifdef _X86_
    if (dst <= src || (char *)dst >= ((char *)src + count)) {
 
        /*
         * Non-Overlapping Buffers
         * copy from lower addresses to higher addresses
         */
        _asm {
            mov     esi,src
            mov     edi,dst
            mov     ecx,count
            cld
            mov     edx,ecx
            and     edx,MEMORY_ALIGNMENT_MASK
            shr     ecx,MEMORY_ALIGNMENT_LOG2
            rep     movsd
            or      ecx,edx
            jz      memmove_done
            rep     movsb
memmove_done:
        }
    }
    else {
 
        /*
         * Overlapping Buffers
         * copy from higher addresses to lower addresses
         */
        _asm {
            mov     esi,src
            mov     edi,dst
            mov     ecx,count
            std
            add     esi,ecx
            add     edi,ecx
            dec     esi
            dec     edi
            rep     movsb
            cld
        }
    }
#else
    MoveMemory(dst, src, count);
#endif
 
    return ret;
}
 
HRESULT AMSafeMemMoveOffset(
    __in_bcount(dst_size) void * dst,
    __in size_t dst_size,
    __in DWORD cb_dst_offset,
    __in_bcount(src_size) const void * src,
    __in size_t src_size,
    __in DWORD cb_src_offset,
    __in size_t count)
{
    // prevent read overruns
    if( count + cb_src_offset < count ||   // prevent integer overflow
        count + cb_src_offset > src_size)  // prevent read overrun
    {
        return E_INVALIDARG;
    }
 
    // prevent write overruns
    if( count + cb_dst_offset < count ||   // prevent integer overflow
        count + cb_dst_offset > dst_size)  // prevent write overrun
    {
        return E_INVALIDARG;
    }
 
    memmoveInternal( (BYTE *)dst+cb_dst_offset, (BYTE *)src+cb_src_offset, count);
    return S_OK;
}
 
 
#ifdef _DEBUG
/******************************Public*Routine******************************\
* Debug CCritSec helpers
*
* We provide debug versions of the Constructor, destructor, Lock and Unlock
* routines.  The debug code tracks who owns each critical section by
* maintaining a depth count.
*
* History:
*
\**************************************************************************/
 
CCritSec::CCritSec()
{
    InitializeCriticalSection(&m_CritSec);
    m_currentOwner = m_lockCount = 0;
    m_fTrace = FALSE;
}
 
CCritSec::~CCritSec()
{
    DeleteCriticalSection(&m_CritSec);
}
 
void CCritSec::Lock()
{
    UINT tracelevel=3;
    DWORD us = GetCurrentThreadId();
    DWORD currentOwner = m_currentOwner;
    if (currentOwner && (currentOwner != us)) {
        // already owned, but not by us
        if (m_fTrace) {
            DbgLog((LOG_LOCKING, 2, TEXT("Thread %d about to wait for lock %x owned by %d"),
                GetCurrentThreadId(), &m_CritSec, currentOwner));
            tracelevel=2;
	        // if we saw the message about waiting for the critical
	        // section we ensure we see the message when we get the
	        // critical section
        }
    }
    EnterCriticalSection(&m_CritSec);
    if (0 == m_lockCount++) {
        // we now own it for the first time.  Set owner information
        m_currentOwner = us;
 
        if (m_fTrace) {
            DbgLog((LOG_LOCKING, tracelevel, TEXT("Thread %d now owns lock %x"), m_currentOwner, &m_CritSec));
        }
    }
}
 
void CCritSec::Unlock() {
    if (0 == --m_lockCount) {
        // about to be unowned
        if (m_fTrace) {
            DbgLog((LOG_LOCKING, 3, TEXT("Thread %d releasing lock %x"), m_currentOwner, &m_CritSec));
        }
 
        m_currentOwner = 0;
    }
    LeaveCriticalSection(&m_CritSec);
}
 
void WINAPI DbgLockTrace(CCritSec * pcCrit, BOOL fTrace)
{
    pcCrit->m_fTrace = fTrace;
}
 
BOOL WINAPI CritCheckIn(CCritSec * pcCrit)
{
    return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
 
BOOL WINAPI CritCheckIn(const CCritSec * pcCrit)
{
    return (GetCurrentThreadId() == pcCrit->m_currentOwner);
}
 
BOOL WINAPI CritCheckOut(CCritSec * pcCrit)
{
    return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
 
BOOL WINAPI CritCheckOut(const CCritSec * pcCrit)
{
    return (GetCurrentThreadId() != pcCrit->m_currentOwner);
}
#endif
 
 
STDAPI WriteBSTR(__deref_out BSTR *pstrDest, LPCWSTR szSrc)
{
    *pstrDest = SysAllocString( szSrc );
    if( !(*pstrDest) ) return E_OUTOFMEMORY;
    return NOERROR;
}
 
 
STDAPI FreeBSTR(__deref_in BSTR* pstr)
{
    if( (PVOID)*pstr == NULL ) return S_FALSE;
    SysFreeString( *pstr );
    *pstr = NULL;
    return NOERROR;
}
 
 
// Return a wide string - allocating memory for it
// Returns:
//    S_OK          - no error
//    E_POINTER     - ppszReturn == NULL
//    E_OUTOFMEMORY - can't allocate memory for returned string
STDAPI AMGetWideString(LPCWSTR psz, __deref_out LPWSTR *ppszReturn)
{
    CheckPointer(ppszReturn, E_POINTER);
    ValidateReadWritePtr(ppszReturn, sizeof(LPWSTR));
    *ppszReturn = NULL;
    size_t nameLen;
    HRESULT hr = StringCbLengthW(psz, 100000, &nameLen);
    if (FAILED(hr)) {
        return hr;
    }
    *ppszReturn = (LPWSTR)CoTaskMemAlloc(nameLen + sizeof(WCHAR));
    if (*ppszReturn == NULL) {
       return E_OUTOFMEMORY;
    }
    CopyMemory(*ppszReturn, psz, nameLen + sizeof(WCHAR));
    return NOERROR;
}
 
// Waits for the HANDLE hObject.  While waiting messages sent
// to windows on our thread by SendMessage will be processed.
// Using this function to do waits and mutual exclusion
// avoids some deadlocks in objects with windows.
// Return codes are the same as for WaitForSingleObject
DWORD WINAPI WaitDispatchingMessages(
    HANDLE hObject,
    DWORD dwWait,
    HWND hwnd,
    UINT uMsg,
    HANDLE hEvent)
{
    BOOL bPeeked = FALSE;
    DWORD dwResult;
    DWORD dwStart = 0;
    DWORD dwThreadPriority = THREAD_PRIORITY_NORMAL;
 
    static UINT uMsgId = 0;
 
    HANDLE hObjects[2] = { hObject, hEvent };
    if (dwWait != INFINITE && dwWait != 0) {
        dwStart = GetTickCount();
    }
    for (; ; ) {
        DWORD nCount = NULL != hEvent ? 2 : 1;
 
        //  Minimize the chance of actually dispatching any messages
        //  by seeing if we can lock immediately.
        dwResult = WaitForMultipleObjects(nCount, hObjects, FALSE, 0);
        if (dwResult < WAIT_OBJECT_0 + nCount) {
            break;
        }
 
        DWORD dwTimeOut = dwWait;
        if (dwTimeOut > 10) {
            dwTimeOut = 10;
        }
        dwResult = MsgWaitForMultipleObjects(
                             nCount,
                             hObjects,
                             FALSE,
                             dwTimeOut,
                             hwnd == NULL ? QS_SENDMESSAGE :
                                            QS_SENDMESSAGE + QS_POSTMESSAGE);
        if (dwResult == WAIT_OBJECT_0 + nCount ||
            dwResult == WAIT_TIMEOUT && dwTimeOut != dwWait) {
            MSG msg;
            if (hwnd != NULL) {
                while (PeekMessage(&msg, hwnd, uMsg, uMsg, PM_REMOVE)) {
                    DispatchMessage(&msg);
                }
            }
            // Do this anyway - the previous peek doesn't flush out the
            // messages
            PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE);
 
            if (dwWait != INFINITE && dwWait != 0) {
                DWORD dwNow = GetTickCount();
 
                // Working with differences handles wrap-around
                DWORD dwDiff = dwNow - dwStart;
                if (dwDiff > dwWait) {
                    dwWait = 0;
                } else {
                    dwWait -= dwDiff;
                }
                dwStart = dwNow;
            }
            if (!bPeeked) {
                //  Raise our priority to prevent our message queue
                //  building up
                dwThreadPriority = GetThreadPriority(GetCurrentThread());
                if (dwThreadPriority < THREAD_PRIORITY_HIGHEST) {
                    SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
                }
                bPeeked = TRUE;
            }
        } else {
            break;
        }
    }
    if (bPeeked) {
        SetThreadPriority(GetCurrentThread(), dwThreadPriority);
        if (HIWORD(GetQueueStatus(QS_POSTMESSAGE)) & QS_POSTMESSAGE) {
            if (uMsgId == 0) {
                uMsgId = RegisterWindowMessage(TEXT("AMUnblock"));
            }
            if (uMsgId != 0) {
                MSG msg;
                //  Remove old ones
                while (PeekMessage(&msg, (HWND)-1, uMsgId, uMsgId, PM_REMOVE)) {
                }
            }
            PostThreadMessage(GetCurrentThreadId(), uMsgId, 0, 0);
        }
    }
    return dwResult;
}
 
HRESULT AmGetLastErrorToHResult()
{
    DWORD dwLastError = GetLastError();
    if(dwLastError != 0)
    {
        return HRESULT_FROM_WIN32(dwLastError);
    }
    else
    {
        return E_FAIL;
    }
}
 
IUnknown* QzAtlComPtrAssign(__deref_inout_opt IUnknown** pp, __in_opt IUnknown* lp)
{
    if (lp != NULL)
        lp->AddRef();
    if (*pp)
        (*pp)->Release();
    *pp = lp;
    return lp;
}
 
/******************************************************************************
 
CompatibleTimeSetEvent
 
    CompatibleTimeSetEvent() sets the TIME_KILL_SYNCHRONOUS flag before calling
timeSetEvent() if the current operating system supports it.  TIME_KILL_SYNCHRONOUS
is supported on Windows XP and later operating systems.
 
Parameters:
- The same parameters as timeSetEvent().  See timeSetEvent()'s documentation in 
the Platform SDK for more information.
 
Return Value:
- The same return value as timeSetEvent().  See timeSetEvent()'s documentation in 
the Platform SDK for more information.
 
******************************************************************************/
MMRESULT CompatibleTimeSetEvent( UINT uDelay, UINT uResolution, __in LPTIMECALLBACK lpTimeProc, DWORD_PTR dwUser, UINT fuEvent )
{
    #if WINVER >= 0x0501
    {
        static bool fCheckedVersion = false;
        static bool fTimeKillSynchronousFlagAvailable = false; 
 
        if( !fCheckedVersion ) {
            fTimeKillSynchronousFlagAvailable = TimeKillSynchronousFlagAvailable();
            fCheckedVersion = true;
        }
 
        if( fTimeKillSynchronousFlagAvailable ) {
            fuEvent = fuEvent | TIME_KILL_SYNCHRONOUS;
        }
    }
    #endif // WINVER >= 0x0501
 
    return timeSetEvent( uDelay, uResolution, lpTimeProc, dwUser, fuEvent );
}
 
bool TimeKillSynchronousFlagAvailable( void )
{
    OSVERSIONINFO osverinfo;
 
    osverinfo.dwOSVersionInfoSize = sizeof(osverinfo);
 
    if( GetVersionEx( &osverinfo ) ) {
        
        // Windows XP's major version is 5 and its' minor version is 1.
        // timeSetEvent() started supporting the TIME_KILL_SYNCHRONOUS flag
        // in Windows XP.
        if( (osverinfo.dwMajorVersion > 5) || 
            ( (osverinfo.dwMajorVersion == 5) && (osverinfo.dwMinorVersion >= 1) ) ) {
            return true;
        }
    }
 
    return false;
}
 
 

V730 Not all members of a class are initialized inside the constructor. Consider inspecting: m_dwParam, m_dwReturnVal.

V648 Priority of the '&&' operation is higher than that of the '||' operation.

V1003 The macro 'MEMORY_ALIGNMENT_MASK' is a dangerous expression. The expression must be surrounded by parentheses.

V513 Use _beginthreadex/_endthreadex functions instead of CreateThread/ExitThread functions.