/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
 * Copyright (c) 2012, Carl Hetherington
 * Copyright (c) 2017, IntoPIX SA <support@intopix.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
 
#define OPJ_SKIP_POISON
#include "opj_includes.h"
 
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
 
#if defined(__GNUC__)
#pragma GCC poison malloc calloc realloc free
#endif
 
#include "t1_luts.h"
 
/** @defgroup T1 T1 - Implementation of the tier-1 coding */
/*@{*/
 
#define T1_FLAGS(x, y) (t1->flags[x + 1 + ((y / 4) + 1) * (t1->w+2)])
 
#define opj_t1_setcurctx(curctx, ctxno)  curctx = &(mqc)->ctxs[(OPJ_UINT32)(ctxno)]
 
/* Macros to deal with signed integer with just MSB bit set for
 * negative values (smr = signed magnitude representation) */
#define opj_smr_abs(x)  (((OPJ_UINT32)(x)) & 0x7FFFFFFFU)
#define opj_smr_sign(x) (((OPJ_UINT32)(x)) >> 31)
#define opj_to_smr(x)   ((x) >= 0 ? (OPJ_UINT32)(x) : ((OPJ_UINT32)(-x) | 0x80000000U))
 
 
/** @name Local static functions */
/*@{*/
 
static INLINE OPJ_BYTE opj_t1_getctxno_zc(opj_mqc_t *mqc, OPJ_UINT32 f);
static INLINE OPJ_UINT32 opj_t1_getctxno_mag(OPJ_UINT32 f);
static OPJ_INT16 opj_t1_getnmsedec_sig(OPJ_UINT32 x, OPJ_UINT32 bitpos);
static OPJ_INT16 opj_t1_getnmsedec_ref(OPJ_UINT32 x, OPJ_UINT32 bitpos);
static INLINE void opj_t1_update_flags(opj_flag_t *flagsp, OPJ_UINT32 ci,
                                       OPJ_UINT32 s, OPJ_UINT32 stride,
                                       OPJ_UINT32 vsc);
 
 
/**
Decode significant pass
*/
 
static INLINE void opj_t1_dec_sigpass_step_raw(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 vsc,
    OPJ_UINT32 row);
static INLINE void opj_t1_dec_sigpass_step_mqc(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 row,
    OPJ_UINT32 flags_stride,
    OPJ_UINT32 vsc);
 
/**
Encode significant pass
*/
static void opj_t1_enc_sigpass(opj_t1_t *t1,
                               OPJ_INT32 bpno,
                               OPJ_INT32 *nmsedec,
                               OPJ_BYTE type,
                               OPJ_UINT32 cblksty);
 
/**
Decode significant pass
*/
static void opj_t1_dec_sigpass_raw(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 cblksty);
 
/**
Encode refinement pass
*/
static void opj_t1_enc_refpass(opj_t1_t *t1,
                               OPJ_INT32 bpno,
                               OPJ_INT32 *nmsedec,
                               OPJ_BYTE type);
 
/**
Decode refinement pass
*/
static void opj_t1_dec_refpass_raw(
    opj_t1_t *t1,
    OPJ_INT32 bpno);
 
 
/**
Decode refinement pass
*/
 
static INLINE void  opj_t1_dec_refpass_step_raw(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 poshalf,
    OPJ_UINT32 row);
static INLINE void opj_t1_dec_refpass_step_mqc(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 poshalf,
    OPJ_UINT32 row);
 
 
/**
Decode clean-up pass
*/
 
static void opj_t1_dec_clnpass_step(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 row,
    OPJ_UINT32 vsc);
 
/**
Encode clean-up pass
*/
static void opj_t1_enc_clnpass(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 *nmsedec,
    OPJ_UINT32 cblksty);
 
static OPJ_FLOAT64 opj_t1_getwmsedec(
    OPJ_INT32 nmsedec,
    OPJ_UINT32 compno,
    OPJ_UINT32 level,
    OPJ_UINT32 orient,
    OPJ_INT32 bpno,
    OPJ_UINT32 qmfbid,
    OPJ_FLOAT64 stepsize,
    OPJ_UINT32 numcomps,
    const OPJ_FLOAT64 * mct_norms,
    OPJ_UINT32 mct_numcomps);
 
/** Return "cumwmsedec" that should be used to increase tile->distotile */
static double opj_t1_encode_cblk(opj_t1_t *t1,
                                 opj_tcd_cblk_enc_t* cblk,
                                 OPJ_UINT32 orient,
                                 OPJ_UINT32 compno,
                                 OPJ_UINT32 level,
                                 OPJ_UINT32 qmfbid,
                                 OPJ_FLOAT64 stepsize,
                                 OPJ_UINT32 cblksty,
                                 OPJ_UINT32 numcomps,
                                 const OPJ_FLOAT64 * mct_norms,
                                 OPJ_UINT32 mct_numcomps);
 
/**
Decode 1 code-block
@param t1 T1 handle
@param cblk Code-block coding parameters
@param orient
@param roishift Region of interest shifting value
@param cblksty Code-block style
@param p_manager the event manager
@param p_manager_mutex mutex for the event manager
@param check_pterm whether PTERM correct termination should be checked
*/
static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
                                   opj_tcd_cblk_dec_t* cblk,
                                   OPJ_UINT32 orient,
                                   OPJ_UINT32 roishift,
                                   OPJ_UINT32 cblksty,
                                   opj_event_mgr_t *p_manager,
                                   opj_mutex_t* p_manager_mutex,
                                   OPJ_BOOL check_pterm);
 
static OPJ_BOOL opj_t1_allocate_buffers(opj_t1_t *t1,
                                        OPJ_UINT32 w,
                                        OPJ_UINT32 h);
 
/*@}*/
 
/*@}*/
 
/* ----------------------------------------------------------------------- */
 
static INLINE OPJ_BYTE opj_t1_getctxno_zc(opj_mqc_t *mqc, OPJ_UINT32 f)
{
    return mqc->lut_ctxno_zc_orient[(f & T1_SIGMA_NEIGHBOURS)];
}
 
static INLINE OPJ_UINT32 opj_t1_getctxtno_sc_or_spb_index(OPJ_UINT32 fX,
        OPJ_UINT32 pfX,
        OPJ_UINT32 nfX,
        OPJ_UINT32 ci)
{
    /*
      0 pfX T1_CHI_THIS           T1_LUT_SGN_W
      1 tfX T1_SIGMA_1            T1_LUT_SIG_N
      2 nfX T1_CHI_THIS           T1_LUT_SGN_E
      3 tfX T1_SIGMA_3            T1_LUT_SIG_W
      4  fX T1_CHI_(THIS - 1)     T1_LUT_SGN_N
      5 tfX T1_SIGMA_5            T1_LUT_SIG_E
      6  fX T1_CHI_(THIS + 1)     T1_LUT_SGN_S
      7 tfX T1_SIGMA_7            T1_LUT_SIG_S
    */
 
    OPJ_UINT32 lu = (fX >> (ci * 3U)) & (T1_SIGMA_1 | T1_SIGMA_3 | T1_SIGMA_5 |
                                         T1_SIGMA_7);
 
    lu |= (pfX >> (T1_CHI_THIS_I      + (ci * 3U))) & (1U << 0);
    lu |= (nfX >> (T1_CHI_THIS_I - 2U + (ci * 3U))) & (1U << 2);
    if (ci == 0U) {
        lu |= (fX >> (T1_CHI_0_I - 4U)) & (1U << 4);
    } else {
        lu |= (fX >> (T1_CHI_1_I - 4U + ((ci - 1U) * 3U))) & (1U << 4);
    }
    lu |= (fX >> (T1_CHI_2_I - 6U + (ci * 3U))) & (1U << 6);
    return lu;
}
 
static INLINE OPJ_BYTE opj_t1_getctxno_sc(OPJ_UINT32 lu)
{
    return lut_ctxno_sc[lu];
}
 
static INLINE OPJ_UINT32 opj_t1_getctxno_mag(OPJ_UINT32 f)
{
    OPJ_UINT32 tmp = (f & T1_SIGMA_NEIGHBOURS) ? T1_CTXNO_MAG + 1 : T1_CTXNO_MAG;
    OPJ_UINT32 tmp2 = (f & T1_MU_0) ? T1_CTXNO_MAG + 2 : tmp;
    return tmp2;
}
 
static INLINE OPJ_BYTE opj_t1_getspb(OPJ_UINT32 lu)
{
    return lut_spb[lu];
}
 
static OPJ_INT16 opj_t1_getnmsedec_sig(OPJ_UINT32 x, OPJ_UINT32 bitpos)
{
    if (bitpos > 0) {
        return lut_nmsedec_sig[(x >> (bitpos)) & ((1 << T1_NMSEDEC_BITS) - 1)];
    }
 
    return lut_nmsedec_sig0[x & ((1 << T1_NMSEDEC_BITS) - 1)];
}
 
static OPJ_INT16 opj_t1_getnmsedec_ref(OPJ_UINT32 x, OPJ_UINT32 bitpos)
{
    if (bitpos > 0) {
        return lut_nmsedec_ref[(x >> (bitpos)) & ((1 << T1_NMSEDEC_BITS) - 1)];
    }
 
    return lut_nmsedec_ref0[x & ((1 << T1_NMSEDEC_BITS) - 1)];
}
 
#define opj_t1_update_flags_macro(flags, flagsp, ci, s, stride, vsc) \
{ \
    /* east */ \
    flagsp[-1] |= T1_SIGMA_5 << (3U * ci); \
 \
    /* mark target as significant */ \
    flags |= ((s << T1_CHI_1_I) | T1_SIGMA_4) << (3U * ci); \
 \
    /* west */ \
    flagsp[1] |= T1_SIGMA_3 << (3U * ci); \
 \
    /* north-west, north, north-east */ \
    if (ci == 0U && !(vsc)) { \
        opj_flag_t* north = flagsp - (stride); \
        *north |= (s << T1_CHI_5_I) | T1_SIGMA_16; \
        north[-1] |= T1_SIGMA_17; \
        north[1] |= T1_SIGMA_15; \
    } \
 \
    /* south-west, south, south-east */ \
    if (ci == 3U) { \
        opj_flag_t* south = flagsp + (stride); \
        *south |= (s << T1_CHI_0_I) | T1_SIGMA_1; \
        south[-1] |= T1_SIGMA_2; \
        south[1] |= T1_SIGMA_0; \
    } \
}
 
 
static INLINE void opj_t1_update_flags(opj_flag_t *flagsp, OPJ_UINT32 ci,
                                       OPJ_UINT32 s, OPJ_UINT32 stride,
                                       OPJ_UINT32 vsc)
{
    opj_t1_update_flags_macro(*flagsp, flagsp, ci, s, stride, vsc);
}
 
/**
Encode significant pass
*/
#define opj_t1_enc_sigpass_step_macro(mqc, curctx, a, c, ct, flagspIn, datapIn, bpno, one, nmsedec, type, ciIn, vscIn) \
{ \
    OPJ_UINT32 v; \
    const OPJ_UINT32 ci = (ciIn); \
    const OPJ_UINT32 vsc = (vscIn); \
    const OPJ_INT32* l_datap = (datapIn); \
    opj_flag_t* flagsp = (flagspIn); \
    OPJ_UINT32 const flags = *flagsp; \
    if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U && \
            (flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) { \
        OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U)); \
        v = (opj_smr_abs(*l_datap) & (OPJ_UINT32)one) ? 1 : 0; \
/* #ifdef DEBUG_ENC_SIG */ \
/*        fprintf(stderr, "   ctxt1=%d\n", ctxt1); */ \
/* #endif */ \
        opj_t1_setcurctx(curctx, ctxt1); \
        if (type == T1_TYPE_RAW) {  /* BYPASS/LAZY MODE */ \
            opj_mqc_bypass_enc_macro(mqc, c, ct, v); \
        } else { \
            opj_mqc_encode_macro(mqc, curctx, a, c, ct, v); \
        } \
        if (v) { \
            OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
                                *flagsp, \
                                flagsp[-1], flagsp[1], \
                                ci); \
            OPJ_UINT32 ctxt2 = opj_t1_getctxno_sc(lu); \
            v = opj_smr_sign(*l_datap); \
            *nmsedec += opj_t1_getnmsedec_sig(opj_smr_abs(*l_datap), \
                                              (OPJ_UINT32)bpno); \
/* #ifdef DEBUG_ENC_SIG */ \
/*            fprintf(stderr, "   ctxt2=%d\n", ctxt2); */ \
/* #endif */ \
            opj_t1_setcurctx(curctx, ctxt2); \
            if (type == T1_TYPE_RAW) {  /* BYPASS/LAZY MODE */ \
                opj_mqc_bypass_enc_macro(mqc, c, ct, v); \
            } else { \
                OPJ_UINT32 spb = opj_t1_getspb(lu); \
/* #ifdef DEBUG_ENC_SIG */ \
/*                fprintf(stderr, "   spb=%d\n", spb); */ \
/* #endif */ \
                opj_mqc_encode_macro(mqc, curctx, a, c, ct, v ^ spb); \
            } \
            opj_t1_update_flags(flagsp, ci, v, t1->w + 2, vsc); \
        } \
        *flagsp |= T1_PI_THIS << (ci * 3U); \
    } \
}
 
static INLINE void opj_t1_dec_sigpass_step_raw(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 vsc,
    OPJ_UINT32 ci)
{
    OPJ_UINT32 v;
    opj_mqc_t *mqc = &(t1->mqc);       /* RAW component */
 
    OPJ_UINT32 const flags = *flagsp;
 
    if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U &&
            (flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) {
        if (opj_mqc_raw_decode(mqc)) {
            v = opj_mqc_raw_decode(mqc);
            *datap = v ? -oneplushalf : oneplushalf;
            opj_t1_update_flags(flagsp, ci, v, t1->w + 2, vsc);
        }
        *flagsp |= T1_PI_THIS << (ci * 3U);
    }
}
 
#define opj_t1_dec_sigpass_step_mqc_macro(flags, flagsp, flags_stride, data, \
                                          data_stride, ci, mqc, curctx, \
                                          v, a, c, ct, oneplushalf, vsc) \
{ \
    if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == 0U && \
        (flags & (T1_SIGMA_NEIGHBOURS << (ci * 3U))) != 0U) { \
        OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U)); \
        opj_t1_setcurctx(curctx, ctxt1); \
        opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
        if (v) { \
            OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
                                flags, \
                                flagsp[-1], flagsp[1], \
                                ci); \
            OPJ_UINT32 ctxt2 = opj_t1_getctxno_sc(lu); \
            OPJ_UINT32 spb = opj_t1_getspb(lu); \
            opj_t1_setcurctx(curctx, ctxt2); \
            opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
            v = v ^ spb; \
            data[ci*data_stride] = v ? -oneplushalf : oneplushalf; \
            opj_t1_update_flags_macro(flags, flagsp, ci, v, flags_stride, vsc); \
        } \
        flags |= T1_PI_THIS << (ci * 3U); \
    } \
}
 
static INLINE void opj_t1_dec_sigpass_step_mqc(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 ci,
    OPJ_UINT32 flags_stride,
    OPJ_UINT32 vsc)
{
    OPJ_UINT32 v;
 
    opj_mqc_t *mqc = &(t1->mqc);       /* MQC component */
    opj_t1_dec_sigpass_step_mqc_macro(*flagsp, flagsp, flags_stride, datap,
                                      0, ci, mqc, mqc->curctx,
                                      v, mqc->a, mqc->c, mqc->ct, oneplushalf, vsc);
}
 
static void opj_t1_enc_sigpass(opj_t1_t *t1,
                               OPJ_INT32 bpno,
                               OPJ_INT32 *nmsedec,
                               OPJ_BYTE type,
                               OPJ_UINT32 cblksty
                              )
{
    OPJ_UINT32 i, k;
    OPJ_INT32 const one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
    opj_flag_t* f = &T1_FLAGS(0, 0);
    OPJ_UINT32 const extra = 2;
    opj_mqc_t* mqc = &(t1->mqc);
    DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
    const OPJ_INT32* datap = t1->data;
 
    *nmsedec = 0;
#ifdef DEBUG_ENC_SIG
    fprintf(stderr, "enc_sigpass: bpno=%d\n", bpno);
#endif
    for (k = 0; k < (t1->h & ~3U); k += 4, f += extra) {
        const OPJ_UINT32 w = t1->w;
#ifdef DEBUG_ENC_SIG
        fprintf(stderr, " k=%d\n", k);
#endif
        for (i = 0; i < w; ++i, ++f, datap += 4) {
#ifdef DEBUG_ENC_SIG
            fprintf(stderr, " i=%d\n", i);
#endif
            if (*f == 0U) {
                /* Nothing to do for any of the 4 data points */
                continue;
            }
            opj_t1_enc_sigpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                &datap[0],
                bpno,
                one,
                nmsedec,
                type,
                0, cblksty & J2K_CCP_CBLKSTY_VSC);
            opj_t1_enc_sigpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                &datap[1],
                bpno,
                one,
                nmsedec,
                type,
                1, 0);
            opj_t1_enc_sigpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                &datap[2],
                bpno,
                one,
                nmsedec,
                type,
                2, 0);
            opj_t1_enc_sigpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                &datap[3],
                bpno,
                one,
                nmsedec,
                type,
                3, 0);
        }
    }
 
    if (k < t1->h) {
        OPJ_UINT32 j;
#ifdef DEBUG_ENC_SIG
        fprintf(stderr, " k=%d\n", k);
#endif
        for (i = 0; i < t1->w; ++i, ++f) {
#ifdef DEBUG_ENC_SIG
            fprintf(stderr, " i=%d\n", i);
#endif
            if (*f == 0U) {
                /* Nothing to do for any of the 4 data points */
                datap += (t1->h - k);
                continue;
            }
            for (j = k; j < t1->h; ++j, ++datap) {
                opj_t1_enc_sigpass_step_macro(
                    mqc, curctx, a, c, ct,
                    f,
                    &datap[0],
                    bpno,
                    one,
                    nmsedec,
                    type,
                    j - k,
                    (j == k && (cblksty & J2K_CCP_CBLKSTY_VSC) != 0));
            }
        }
    }
 
    UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
}
 
static void opj_t1_dec_sigpass_raw(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 cblksty)
{
    OPJ_INT32 one, half, oneplushalf;
    OPJ_UINT32 i, j, k;
    OPJ_INT32 *data = t1->data;
    opj_flag_t *flagsp = &T1_FLAGS(0, 0);
    const OPJ_UINT32 l_w = t1->w;
    one = 1 << bpno;
    half = one >> 1;
    oneplushalf = one | half;
 
    for (k = 0; k < (t1->h & ~3U); k += 4, flagsp += 2, data += 3 * l_w) {
        for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
            opj_flag_t flags = *flagsp;
            if (flags != 0) {
                opj_t1_dec_sigpass_step_raw(
                    t1,
                    flagsp,
                    data,
                    oneplushalf,
                    cblksty & J2K_CCP_CBLKSTY_VSC, /* vsc */
                    0U);
                opj_t1_dec_sigpass_step_raw(
                    t1,
                    flagsp,
                    data + l_w,
                    oneplushalf,
                    OPJ_FALSE, /* vsc */
                    1U);
                opj_t1_dec_sigpass_step_raw(
                    t1,
                    flagsp,
                    data + 2 * l_w,
                    oneplushalf,
                    OPJ_FALSE, /* vsc */
                    2U);
                opj_t1_dec_sigpass_step_raw(
                    t1,
                    flagsp,
                    data + 3 * l_w,
                    oneplushalf,
                    OPJ_FALSE, /* vsc */
                    3U);
            }
        }
    }
    if (k < t1->h) {
        for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
            for (j = 0; j < t1->h - k; ++j) {
                opj_t1_dec_sigpass_step_raw(
                    t1,
                    flagsp,
                    data + j * l_w,
                    oneplushalf,
                    cblksty & J2K_CCP_CBLKSTY_VSC, /* vsc */
                    j);
            }
        }
    }
}
 
#define opj_t1_dec_sigpass_mqc_internal(t1, bpno, vsc, w, h, flags_stride) \
{ \
        OPJ_INT32 one, half, oneplushalf; \
        OPJ_UINT32 i, j, k; \
        register OPJ_INT32 *data = t1->data; \
        register opj_flag_t *flagsp = &t1->flags[(flags_stride) + 1]; \
        const OPJ_UINT32 l_w = w; \
        opj_mqc_t* mqc = &(t1->mqc); \
        DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
        register OPJ_UINT32 v; \
        one = 1 << bpno; \
        half = one >> 1; \
        oneplushalf = one | half; \
        for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
                for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
                        opj_flag_t flags = *flagsp; \
                        if( flags != 0 ) { \
                            opj_t1_dec_sigpass_step_mqc_macro( \
                                flags, flagsp, flags_stride, data, \
                                l_w, 0, mqc, curctx, v, a, c, ct, oneplushalf, vsc); \
                            opj_t1_dec_sigpass_step_mqc_macro( \
                                flags, flagsp, flags_stride, data, \
                                l_w, 1, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
                            opj_t1_dec_sigpass_step_mqc_macro( \
                                flags, flagsp, flags_stride, data, \
                                l_w, 2, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
                            opj_t1_dec_sigpass_step_mqc_macro( \
                                flags, flagsp, flags_stride, data, \
                                l_w, 3, mqc, curctx, v, a, c, ct, oneplushalf, OPJ_FALSE); \
                            *flagsp = flags; \
                        } \
                } \
        } \
        UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
        if( k < h ) { \
            for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
                for (j = 0; j < h - k; ++j) { \
                        opj_t1_dec_sigpass_step_mqc(t1, flagsp, \
                            data + j * l_w, oneplushalf, j, flags_stride, vsc); \
                } \
            } \
        } \
}
 
static void opj_t1_dec_sigpass_mqc_64x64_novsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_FALSE, 64, 64, 66);
}
 
static void opj_t1_dec_sigpass_mqc_64x64_vsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_TRUE, 64, 64, 66);
}
 
static void opj_t1_dec_sigpass_mqc_generic_novsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_FALSE, t1->w, t1->h,
                                    t1->w + 2U);
}
 
static void opj_t1_dec_sigpass_mqc_generic_vsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_sigpass_mqc_internal(t1, bpno, OPJ_TRUE, t1->w, t1->h,
                                    t1->w + 2U);
}
 
static void opj_t1_dec_sigpass_mqc(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 cblksty)
{
    if (t1->w == 64 && t1->h == 64) {
        if (cblksty & J2K_CCP_CBLKSTY_VSC) {
            opj_t1_dec_sigpass_mqc_64x64_vsc(t1, bpno);
        } else {
            opj_t1_dec_sigpass_mqc_64x64_novsc(t1, bpno);
        }
    } else {
        if (cblksty & J2K_CCP_CBLKSTY_VSC) {
            opj_t1_dec_sigpass_mqc_generic_vsc(t1, bpno);
        } else {
            opj_t1_dec_sigpass_mqc_generic_novsc(t1, bpno);
        }
    }
}
 
/**
Encode refinement pass step
*/
#define opj_t1_enc_refpass_step_macro(mqc, curctx, a, c, ct, flags, flagsUpdated, datap, bpno, one, nmsedec, type, ci) \
{\
    OPJ_UINT32 v; \
    if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << ((ci) * 3U))) == (T1_SIGMA_THIS << ((ci) * 3U))) { \
        const OPJ_UINT32 shift_flags = (flags >> ((ci) * 3U)); \
        OPJ_UINT32 ctxt = opj_t1_getctxno_mag(shift_flags); \
        OPJ_UINT32 abs_data = opj_smr_abs(*datap); \
        *nmsedec += opj_t1_getnmsedec_ref(abs_data, \
                                          (OPJ_UINT32)bpno); \
        v = ((OPJ_INT32)abs_data & one) ? 1 : 0; \
/* #ifdef DEBUG_ENC_REF */ \
/*        fprintf(stderr, "  ctxt=%d\n", ctxt); */ \
/* #endif */ \
        opj_t1_setcurctx(curctx, ctxt); \
        if (type == T1_TYPE_RAW) {  /* BYPASS/LAZY MODE */ \
            opj_mqc_bypass_enc_macro(mqc, c, ct, v); \
        } else { \
            opj_mqc_encode_macro(mqc, curctx, a, c, ct, v); \
        } \
        flagsUpdated |= T1_MU_THIS << ((ci) * 3U); \
    } \
}
 
 
static INLINE void opj_t1_dec_refpass_step_raw(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 poshalf,
    OPJ_UINT32 ci)
{
    OPJ_UINT32 v;
 
    opj_mqc_t *mqc = &(t1->mqc);       /* RAW component */
 
    if ((*flagsp & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) ==
            (T1_SIGMA_THIS << (ci * 3U))) {
        v = opj_mqc_raw_decode(mqc);
        *datap += (v ^ (*datap < 0)) ? poshalf : -poshalf;
        *flagsp |= T1_MU_THIS << (ci * 3U);
    }
}
 
#define opj_t1_dec_refpass_step_mqc_macro(flags, data, data_stride, ci, \
                                          mqc, curctx, v, a, c, ct, poshalf) \
{ \
    if ((flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U))) == \
            (T1_SIGMA_THIS << (ci * 3U))) { \
        OPJ_UINT32 ctxt = opj_t1_getctxno_mag(flags >> (ci * 3U)); \
        opj_t1_setcurctx(curctx, ctxt); \
        opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
        data[ci*data_stride] += (v ^ (data[ci*data_stride] < 0)) ? poshalf : -poshalf; \
        flags |= T1_MU_THIS << (ci * 3U); \
    } \
}
 
static INLINE void opj_t1_dec_refpass_step_mqc(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 poshalf,
    OPJ_UINT32 ci)
{
    OPJ_UINT32 v;
 
    opj_mqc_t *mqc = &(t1->mqc);       /* MQC component */
    opj_t1_dec_refpass_step_mqc_macro(*flagsp, datap, 0, ci,
                                      mqc, mqc->curctx, v, mqc->a, mqc->c,
                                      mqc->ct, poshalf);
}
 
static void opj_t1_enc_refpass(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 *nmsedec,
    OPJ_BYTE type)
{
    OPJ_UINT32 i, k;
    const OPJ_INT32 one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
    opj_flag_t* f = &T1_FLAGS(0, 0);
    const OPJ_UINT32 extra = 2U;
    opj_mqc_t* mqc = &(t1->mqc);
    DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
    const OPJ_INT32* datap = t1->data;
 
    *nmsedec = 0;
#ifdef DEBUG_ENC_REF
    fprintf(stderr, "enc_refpass: bpno=%d\n", bpno);
#endif
    for (k = 0; k < (t1->h & ~3U); k += 4, f += extra) {
#ifdef DEBUG_ENC_REF
        fprintf(stderr, " k=%d\n", k);
#endif
        for (i = 0; i < t1->w; ++i, f++, datap += 4) {
            const OPJ_UINT32 flags = *f;
            OPJ_UINT32 flagsUpdated = flags;
#ifdef DEBUG_ENC_REF
            fprintf(stderr, " i=%d\n", i);
#endif
            if ((flags & (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13)) == 0) {
                /* none significant */
                continue;
            }
            if ((flags & (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3)) ==
                    (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3)) {
                /* all processed by sigpass */
                continue;
            }
 
            opj_t1_enc_refpass_step_macro(
                mqc, curctx, a, c, ct,
                flags, flagsUpdated,
                &datap[0],
                bpno,
                one,
                nmsedec,
                type,
                0);
            opj_t1_enc_refpass_step_macro(
                mqc, curctx, a, c, ct,
                flags, flagsUpdated,
                &datap[1],
                bpno,
                one,
                nmsedec,
                type,
                1);
            opj_t1_enc_refpass_step_macro(
                mqc, curctx, a, c, ct,
                flags, flagsUpdated,
                &datap[2],
                bpno,
                one,
                nmsedec,
                type,
                2);
            opj_t1_enc_refpass_step_macro(
                mqc, curctx, a, c, ct,
                flags, flagsUpdated,
                &datap[3],
                bpno,
                one,
                nmsedec,
                type,
                3);
            *f = flagsUpdated;
        }
    }
 
    if (k < t1->h) {
        OPJ_UINT32 j;
        const OPJ_UINT32 remaining_lines = t1->h - k;
#ifdef DEBUG_ENC_REF
        fprintf(stderr, " k=%d\n", k);
#endif
        for (i = 0; i < t1->w; ++i, ++f) {
#ifdef DEBUG_ENC_REF
            fprintf(stderr, " i=%d\n", i);
#endif
            if ((*f & (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13)) == 0) {
                /* none significant */
                datap += remaining_lines;
                continue;
            }
            for (j = 0; j < remaining_lines; ++j, datap ++) {
                opj_t1_enc_refpass_step_macro(
                    mqc, curctx, a, c, ct,
                    *f, *f,
                    &datap[0],
                    bpno,
                    one,
                    nmsedec,
                    type,
                    j);
            }
        }
    }
 
    UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
}
 
 
static void opj_t1_dec_refpass_raw(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    OPJ_INT32 one, poshalf;
    OPJ_UINT32 i, j, k;
    OPJ_INT32 *data = t1->data;
    opj_flag_t *flagsp = &T1_FLAGS(0, 0);
    const OPJ_UINT32 l_w = t1->w;
    one = 1 << bpno;
    poshalf = one >> 1;
    for (k = 0; k < (t1->h & ~3U); k += 4, flagsp += 2, data += 3 * l_w) {
        for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
            opj_flag_t flags = *flagsp;
            if (flags != 0) {
                opj_t1_dec_refpass_step_raw(
                    t1,
                    flagsp,
                    data,
                    poshalf,
                    0U);
                opj_t1_dec_refpass_step_raw(
                    t1,
                    flagsp,
                    data + l_w,
                    poshalf,
                    1U);
                opj_t1_dec_refpass_step_raw(
                    t1,
                    flagsp,
                    data + 2 * l_w,
                    poshalf,
                    2U);
                opj_t1_dec_refpass_step_raw(
                    t1,
                    flagsp,
                    data + 3 * l_w,
                    poshalf,
                    3U);
            }
        }
    }
    if (k < t1->h) {
        for (i = 0; i < l_w; ++i, ++flagsp, ++data) {
            for (j = 0; j < t1->h - k; ++j) {
                opj_t1_dec_refpass_step_raw(
                    t1,
                    flagsp,
                    data + j * l_w,
                    poshalf,
                    j);
            }
        }
    }
}
 
#define opj_t1_dec_refpass_mqc_internal(t1, bpno, w, h, flags_stride) \
{ \
        OPJ_INT32 one, poshalf; \
        OPJ_UINT32 i, j, k; \
        register OPJ_INT32 *data = t1->data; \
        register opj_flag_t *flagsp = &t1->flags[flags_stride + 1]; \
        const OPJ_UINT32 l_w = w; \
        opj_mqc_t* mqc = &(t1->mqc); \
        DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
        register OPJ_UINT32 v; \
        one = 1 << bpno; \
        poshalf = one >> 1; \
        for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
                for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
                        opj_flag_t flags = *flagsp; \
                        if( flags != 0 ) { \
                            opj_t1_dec_refpass_step_mqc_macro( \
                                flags, data, l_w, 0, \
                                mqc, curctx, v, a, c, ct, poshalf); \
                            opj_t1_dec_refpass_step_mqc_macro( \
                                flags, data, l_w, 1, \
                                mqc, curctx, v, a, c, ct, poshalf); \
                            opj_t1_dec_refpass_step_mqc_macro( \
                                flags, data, l_w, 2, \
                                mqc, curctx, v, a, c, ct, poshalf); \
                            opj_t1_dec_refpass_step_mqc_macro( \
                                flags, data, l_w, 3, \
                                mqc, curctx, v, a, c, ct, poshalf); \
                            *flagsp = flags; \
                        } \
                } \
        } \
        UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
        if( k < h ) { \
            for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
                for (j = 0; j < h - k; ++j) { \
                        opj_t1_dec_refpass_step_mqc(t1, flagsp, data + j * l_w, poshalf, j); \
                } \
            } \
        } \
}
 
static void opj_t1_dec_refpass_mqc_64x64(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_refpass_mqc_internal(t1, bpno, 64, 64, 66);
}
 
static void opj_t1_dec_refpass_mqc_generic(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_refpass_mqc_internal(t1, bpno, t1->w, t1->h, t1->w + 2U);
}
 
static void opj_t1_dec_refpass_mqc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    if (t1->w == 64 && t1->h == 64) {
        opj_t1_dec_refpass_mqc_64x64(t1, bpno);
    } else {
        opj_t1_dec_refpass_mqc_generic(t1, bpno);
    }
}
 
/**
Encode clean-up pass step
*/
#define opj_t1_enc_clnpass_step_macro(mqc, curctx, a, c, ct, flagspIn, datapIn, bpno, one, nmsedec, agg, runlen, lim, cblksty) \
{ \
    OPJ_UINT32 v; \
    OPJ_UINT32 ci; \
    opj_flag_t* const flagsp = (flagspIn); \
    const OPJ_INT32* l_datap = (datapIn); \
    const OPJ_UINT32 check = (T1_SIGMA_4 | T1_SIGMA_7 | T1_SIGMA_10 | T1_SIGMA_13 | \
                              T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
 \
    if ((*flagsp & check) == check) { \
        if (runlen == 0) { \
            *flagsp &= ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
        } else if (runlen == 1) { \
            *flagsp &= ~(T1_PI_1 | T1_PI_2 | T1_PI_3); \
        } else if (runlen == 2) { \
            *flagsp &= ~(T1_PI_2 | T1_PI_3); \
        } else if (runlen == 3) { \
            *flagsp &= ~(T1_PI_3); \
        } \
    } \
    else \
    for (ci = runlen; ci < lim; ++ci) { \
        OPJ_BOOL goto_PARTIAL = OPJ_FALSE; \
        if ((agg != 0) && (ci == runlen)) { \
            goto_PARTIAL = OPJ_TRUE; \
        } \
        else if (!(*flagsp & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U)))) { \
            OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, *flagsp >> (ci * 3U)); \
/* #ifdef DEBUG_ENC_CLN */ \
/*            printf("   ctxt1=%d\n", ctxt1); */ \
/* #endif */ \
            opj_t1_setcurctx(curctx, ctxt1); \
            v = (opj_smr_abs(*l_datap) & (OPJ_UINT32)one) ? 1 : 0; \
            opj_mqc_encode_macro(mqc, curctx, a, c, ct, v); \
            if (v) { \
                goto_PARTIAL = OPJ_TRUE; \
            } \
        } \
        if( goto_PARTIAL ) { \
            OPJ_UINT32 vsc; \
            OPJ_UINT32 ctxt2, spb; \
            OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
                        *flagsp, \
                        flagsp[-1], flagsp[1], \
                        ci); \
            *nmsedec += opj_t1_getnmsedec_sig(opj_smr_abs(*l_datap), \
                                                (OPJ_UINT32)bpno); \
            ctxt2 = opj_t1_getctxno_sc(lu); \
/* #ifdef DEBUG_ENC_CLN */ \
/*           printf("   ctxt2=%d\n", ctxt2); */ \
/* #endif */ \
            opj_t1_setcurctx(curctx, ctxt2); \
 \
            v = opj_smr_sign(*l_datap); \
            spb = opj_t1_getspb(lu); \
/* #ifdef DEBUG_ENC_CLN */ \
/*           printf("   spb=%d\n", spb); */\
/* #endif */ \
            opj_mqc_encode_macro(mqc, curctx, a, c, ct, v ^ spb); \
            vsc = ((cblksty & J2K_CCP_CBLKSTY_VSC) && (ci == 0)) ? 1 : 0; \
            opj_t1_update_flags(flagsp, ci, v, t1->w + 2U, vsc); \
        } \
        *flagsp &= ~(T1_PI_THIS << (3U * ci)); \
        l_datap ++; \
    } \
}
 
#define opj_t1_dec_clnpass_step_macro(check_flags, partial, \
                                      flags, flagsp, flags_stride, data, \
                                      data_stride, ci, mqc, curctx, \
                                      v, a, c, ct, oneplushalf, vsc) \
{ \
    if ( !check_flags || !(flags & ((T1_SIGMA_THIS | T1_PI_THIS) << (ci * 3U)))) {\
        do { \
            if( !partial ) { \
                OPJ_UINT32 ctxt1 = opj_t1_getctxno_zc(mqc, flags >> (ci * 3U)); \
                opj_t1_setcurctx(curctx, ctxt1); \
                opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
                if( !v ) \
                    break; \
            } \
            { \
                OPJ_UINT32 lu = opj_t1_getctxtno_sc_or_spb_index( \
                                    flags, flagsp[-1], flagsp[1], \
                                    ci); \
                opj_t1_setcurctx(curctx, opj_t1_getctxno_sc(lu)); \
                opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
                v = v ^ opj_t1_getspb(lu); \
                data[ci*data_stride] = v ? -oneplushalf : oneplushalf; \
                opj_t1_update_flags_macro(flags, flagsp, ci, v, flags_stride, vsc); \
            } \
        } while(0); \
    } \
}
 
static void opj_t1_dec_clnpass_step(
    opj_t1_t *t1,
    opj_flag_t *flagsp,
    OPJ_INT32 *datap,
    OPJ_INT32 oneplushalf,
    OPJ_UINT32 ci,
    OPJ_UINT32 vsc)
{
    OPJ_UINT32 v;
 
    opj_mqc_t *mqc = &(t1->mqc);   /* MQC component */
    opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE,
                                  *flagsp, flagsp, t1->w + 2U, datap,
                                  0, ci, mqc, mqc->curctx,
                                  v, mqc->a, mqc->c, mqc->ct, oneplushalf, vsc);
}
 
static void opj_t1_enc_clnpass(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 *nmsedec,
    OPJ_UINT32 cblksty)
{
    OPJ_UINT32 i, k;
    const OPJ_INT32 one = 1 << (bpno + T1_NMSEDEC_FRACBITS);
    opj_mqc_t* mqc = &(t1->mqc);
    DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
    const OPJ_INT32* datap = t1->data;
    opj_flag_t *f = &T1_FLAGS(0, 0);
    const OPJ_UINT32 extra = 2U;
 
    *nmsedec = 0;
#ifdef DEBUG_ENC_CLN
    printf("enc_clnpass: bpno=%d\n", bpno);
#endif
    for (k = 0; k < (t1->h & ~3U); k += 4, f += extra) {
#ifdef DEBUG_ENC_CLN
        printf(" k=%d\n", k);
#endif
        for (i = 0; i < t1->w; ++i, f++) {
            OPJ_UINT32 agg, runlen;
#ifdef DEBUG_ENC_CLN
            printf("  i=%d\n", i);
#endif
            agg = !*f;
#ifdef DEBUG_ENC_CLN
            printf("   agg=%d\n", agg);
#endif
            if (agg) {
                for (runlen = 0; runlen < 4; ++runlen, ++datap) {
                    if (opj_smr_abs(*datap) & (OPJ_UINT32)one) {
                        break;
                    }
                }
                opj_t1_setcurctx(curctx, T1_CTXNO_AGG);
                opj_mqc_encode_macro(mqc, curctx, a, c, ct, runlen != 4);
                if (runlen == 4) {
                    continue;
                }
                opj_t1_setcurctx(curctx, T1_CTXNO_UNI);
                opj_mqc_encode_macro(mqc, curctx, a, c, ct, runlen >> 1);
                opj_mqc_encode_macro(mqc, curctx, a, c, ct, runlen & 1);
            } else {
                runlen = 0;
            }
            opj_t1_enc_clnpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                datap,
                bpno,
                one,
                nmsedec,
                agg,
                runlen,
                4U,
                cblksty);
            datap += 4 - runlen;
        }
    }
    if (k < t1->h) {
        const OPJ_UINT32 agg = 0;
        const OPJ_UINT32 runlen = 0;
#ifdef DEBUG_ENC_CLN
        printf(" k=%d\n", k);
#endif
        for (i = 0; i < t1->w; ++i, f++) {
#ifdef DEBUG_ENC_CLN
            printf("  i=%d\n", i);
            printf("   agg=%d\n", agg);
#endif
            opj_t1_enc_clnpass_step_macro(
                mqc, curctx, a, c, ct,
                f,
                datap,
                bpno,
                one,
                nmsedec,
                agg,
                runlen,
                t1->h - k,
                cblksty);
            datap += t1->h - k;
        }
    }
 
    UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct);
}
 
#define opj_t1_dec_clnpass_internal(t1, bpno, vsc, w, h, flags_stride) \
{ \
    OPJ_INT32 one, half, oneplushalf; \
    OPJ_UINT32 runlen; \
    OPJ_UINT32 i, j, k; \
    const OPJ_UINT32 l_w = w; \
    opj_mqc_t* mqc = &(t1->mqc); \
    register OPJ_INT32 *data = t1->data; \
    register opj_flag_t *flagsp = &t1->flags[flags_stride + 1]; \
    DOWNLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
    register OPJ_UINT32 v; \
    one = 1 << bpno; \
    half = one >> 1; \
    oneplushalf = one | half; \
    for (k = 0; k < (h & ~3u); k += 4, data += 3*l_w, flagsp += 2) { \
        for (i = 0; i < l_w; ++i, ++data, ++flagsp) { \
            opj_flag_t flags = *flagsp; \
            if (flags == 0) { \
                OPJ_UINT32 partial = OPJ_TRUE; \
                opj_t1_setcurctx(curctx, T1_CTXNO_AGG); \
                opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
                if (!v) { \
                    continue; \
                } \
                opj_t1_setcurctx(curctx, T1_CTXNO_UNI); \
                opj_mqc_decode_macro(runlen, mqc, curctx, a, c, ct); \
                opj_mqc_decode_macro(v, mqc, curctx, a, c, ct); \
                runlen = (runlen << 1) | v; \
                switch(runlen) { \
                    case 0: \
                        opj_t1_dec_clnpass_step_macro(OPJ_FALSE, OPJ_TRUE,\
                                            flags, flagsp, flags_stride, data, \
                                            l_w, 0, mqc, curctx, \
                                            v, a, c, ct, oneplushalf, vsc); \
                        partial = OPJ_FALSE; \
                        /* FALLTHRU */ \
                    case 1: \
                        opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
                                            flags, flagsp, flags_stride, data, \
                                            l_w, 1, mqc, curctx, \
                                            v, a, c, ct, oneplushalf, OPJ_FALSE); \
                        partial = OPJ_FALSE; \
                        /* FALLTHRU */ \
                    case 2: \
                        opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
                                            flags, flagsp, flags_stride, data, \
                                            l_w, 2, mqc, curctx, \
                                            v, a, c, ct, oneplushalf, OPJ_FALSE); \
                        partial = OPJ_FALSE; \
                        /* FALLTHRU */ \
                    case 3: \
                        opj_t1_dec_clnpass_step_macro(OPJ_FALSE, partial,\
                                            flags, flagsp, flags_stride, data, \
                                            l_w, 3, mqc, curctx, \
                                            v, a, c, ct, oneplushalf, OPJ_FALSE); \
                        break; \
                } \
            } else { \
                opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
                                    flags, flagsp, flags_stride, data, \
                                    l_w, 0, mqc, curctx, \
                                    v, a, c, ct, oneplushalf, vsc); \
                opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
                                    flags, flagsp, flags_stride, data, \
                                    l_w, 1, mqc, curctx, \
                                    v, a, c, ct, oneplushalf, OPJ_FALSE); \
                opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
                                    flags, flagsp, flags_stride, data, \
                                    l_w, 2, mqc, curctx, \
                                    v, a, c, ct, oneplushalf, OPJ_FALSE); \
                opj_t1_dec_clnpass_step_macro(OPJ_TRUE, OPJ_FALSE, \
                                    flags, flagsp, flags_stride, data, \
                                    l_w, 3, mqc, curctx, \
                                    v, a, c, ct, oneplushalf, OPJ_FALSE); \
            } \
            *flagsp = flags & ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
        } \
    } \
    UPLOAD_MQC_VARIABLES(mqc, curctx, a, c, ct); \
    if( k < h ) { \
        for (i = 0; i < l_w; ++i, ++flagsp, ++data) { \
            for (j = 0; j < h - k; ++j) { \
                opj_t1_dec_clnpass_step(t1, flagsp, data + j * l_w, oneplushalf, j, vsc); \
            } \
            *flagsp &= ~(T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3); \
        } \
    } \
}
 
static void opj_t1_dec_clnpass_check_segsym(opj_t1_t *t1, OPJ_INT32 cblksty)
{
    if (cblksty & J2K_CCP_CBLKSTY_SEGSYM) {
        opj_mqc_t* mqc = &(t1->mqc);
        OPJ_UINT32 v, v2;
        opj_mqc_setcurctx(mqc, T1_CTXNO_UNI);
        opj_mqc_decode(v, mqc);
        opj_mqc_decode(v2, mqc);
        v = (v << 1) | v2;
        opj_mqc_decode(v2, mqc);
        v = (v << 1) | v2;
        opj_mqc_decode(v2, mqc);
        v = (v << 1) | v2;
        /*
        if (v!=0xa) {
            opj_event_msg(t1->cinfo, EVT_WARNING, "Bad segmentation symbol %x\n", v);
        }
        */
    }
}
 
static void opj_t1_dec_clnpass_64x64_novsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_clnpass_internal(t1, bpno, OPJ_FALSE, 64, 64, 66);
}
 
static void opj_t1_dec_clnpass_64x64_vsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_clnpass_internal(t1, bpno, OPJ_TRUE, 64, 64, 66);
}
 
static void opj_t1_dec_clnpass_generic_novsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_clnpass_internal(t1, bpno, OPJ_FALSE, t1->w, t1->h,
                                t1->w + 2U);
}
 
static void opj_t1_dec_clnpass_generic_vsc(
    opj_t1_t *t1,
    OPJ_INT32 bpno)
{
    opj_t1_dec_clnpass_internal(t1, bpno, OPJ_TRUE, t1->w, t1->h,
                                t1->w + 2U);
}
 
static void opj_t1_dec_clnpass(
    opj_t1_t *t1,
    OPJ_INT32 bpno,
    OPJ_INT32 cblksty)
{
    if (t1->w == 64 && t1->h == 64) {
        if (cblksty & J2K_CCP_CBLKSTY_VSC) {
            opj_t1_dec_clnpass_64x64_vsc(t1, bpno);
        } else {
            opj_t1_dec_clnpass_64x64_novsc(t1, bpno);
        }
    } else {
        if (cblksty & J2K_CCP_CBLKSTY_VSC) {
            opj_t1_dec_clnpass_generic_vsc(t1, bpno);
        } else {
            opj_t1_dec_clnpass_generic_novsc(t1, bpno);
        }
    }
    opj_t1_dec_clnpass_check_segsym(t1, cblksty);
}
 
 
/** mod fixed_quality */
static OPJ_FLOAT64 opj_t1_getwmsedec(
    OPJ_INT32 nmsedec,
    OPJ_UINT32 compno,
    OPJ_UINT32 level,
    OPJ_UINT32 orient,
    OPJ_INT32 bpno,
    OPJ_UINT32 qmfbid,
    OPJ_FLOAT64 stepsize,
    OPJ_UINT32 numcomps,
    const OPJ_FLOAT64 * mct_norms,
    OPJ_UINT32 mct_numcomps)
{
    OPJ_FLOAT64 w1 = 1, w2, wmsedec;
    OPJ_ARG_NOT_USED(numcomps);
 
    if (mct_norms && (compno < mct_numcomps)) {
        w1 = mct_norms[compno];
    }
 
    if (qmfbid == 1) {
        w2 = opj_dwt_getnorm(level, orient);
    } else {    /* if (qmfbid == 0) */
        const OPJ_INT32 log2_gain = (orient == 0) ? 0 :
                                    (orient == 3) ? 2 : 1;
        w2 = opj_dwt_getnorm_real(level, orient);
        /* Not sure this is right. But preserves past behaviour */
        stepsize /= (1 << log2_gain);
    }
 
    wmsedec = w1 * w2 * stepsize * (1 << bpno);
    wmsedec *= wmsedec * nmsedec / 8192.0;
 
    return wmsedec;
}
 
static OPJ_BOOL opj_t1_allocate_buffers(
    opj_t1_t *t1,
    OPJ_UINT32 w,
    OPJ_UINT32 h)
{
    OPJ_UINT32 flagssize;
    OPJ_UINT32 flags_stride;
 
    /* No risk of overflow. Prior checks ensure those assert are met */
    /* They are per the specification */
    assert(w <= 1024);
    assert(h <= 1024);
    assert(w * h <= 4096);
 
    /* encoder uses tile buffer, so no need to allocate */
    {
        OPJ_UINT32 datasize = w * h;
 
        if (datasize > t1->datasize) {
            opj_aligned_free(t1->data);
            t1->data = (OPJ_INT32*) opj_aligned_malloc(datasize * sizeof(OPJ_INT32));
            if (!t1->data) {
                /* FIXME event manager error callback */
                return OPJ_FALSE;
            }
            t1->datasize = datasize;
        }
        /* memset first arg is declared to never be null by gcc */
        if (t1->data != NULL) {
            memset(t1->data, 0, datasize * sizeof(OPJ_INT32));
        }
    }
 
    flags_stride = w + 2U; /* can't be 0U */
 
    flagssize = (h + 3U) / 4U + 2U;
 
    flagssize *= flags_stride;
    {
        opj_flag_t* p;
        OPJ_UINT32 x;
        OPJ_UINT32 flags_height = (h + 3U) / 4U;
 
        if (flagssize > t1->flagssize) {
 
            opj_aligned_free(t1->flags);
            t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(
                            opj_flag_t));
            if (!t1->flags) {
                /* FIXME event manager error callback */
                return OPJ_FALSE;
            }
        }
        t1->flagssize = flagssize;
 
        memset(t1->flags, 0, flagssize * sizeof(opj_flag_t));
 
        p = &t1->flags[0];
        for (x = 0; x < flags_stride; ++x) {
            /* magic value to hopefully stop any passes being interested in this entry */
            *p++ = (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
        }
 
        p = &t1->flags[((flags_height + 1) * flags_stride)];
        for (x = 0; x < flags_stride; ++x) {
            /* magic value to hopefully stop any passes being interested in this entry */
            *p++ = (T1_PI_0 | T1_PI_1 | T1_PI_2 | T1_PI_3);
        }
 
        if (h % 4) {
            OPJ_UINT32 v = 0;
            p = &t1->flags[((flags_height) * flags_stride)];
            if (h % 4 == 1) {
                v |= T1_PI_1 | T1_PI_2 | T1_PI_3;
            } else if (h % 4 == 2) {
                v |= T1_PI_2 | T1_PI_3;
            } else if (h % 4 == 3) {
                v |= T1_PI_3;
            }
            for (x = 0; x < flags_stride; ++x) {
                *p++ = v;
            }
        }
    }
 
    t1->w = w;
    t1->h = h;
 
    return OPJ_TRUE;
}
 
/* ----------------------------------------------------------------------- */
 
/* ----------------------------------------------------------------------- */
/**
 * Creates a new Tier 1 handle
 * and initializes the look-up tables of the Tier-1 coder/decoder
 * @return a new T1 handle if successful, returns NULL otherwise
*/
opj_t1_t* opj_t1_create(OPJ_BOOL isEncoder)
{
    opj_t1_t *l_t1 = 00;
 
    l_t1 = (opj_t1_t*) opj_calloc(1, sizeof(opj_t1_t));
    if (!l_t1) {
        return 00;
    }
 
    l_t1->encoder = isEncoder;
 
    return l_t1;
}
 
 
/**
 * Destroys a previously created T1 handle
 *
 * @param p_t1 Tier 1 handle to destroy
*/
void opj_t1_destroy(opj_t1_t *p_t1)
{
    if (! p_t1) {
        return;
    }
 
    if (p_t1->data) {
        opj_aligned_free(p_t1->data);
        p_t1->data = 00;
    }
 
    if (p_t1->flags) {
        opj_aligned_free(p_t1->flags);
        p_t1->flags = 00;
    }
 
    opj_free(p_t1->cblkdatabuffer);
 
    opj_free(p_t1);
}
 
typedef struct {
    OPJ_BOOL whole_tile_decoding;
    OPJ_UINT32 resno;
    opj_tcd_cblk_dec_t* cblk;
    opj_tcd_band_t* band;
    opj_tcd_tilecomp_t* tilec;
    opj_tccp_t* tccp;
    OPJ_BOOL mustuse_cblkdatabuffer;
    volatile OPJ_BOOL* pret;
    opj_event_mgr_t *p_manager;
    opj_mutex_t* p_manager_mutex;
    OPJ_BOOL check_pterm;
} opj_t1_cblk_decode_processing_job_t;
 
static void opj_t1_destroy_wrapper(void* t1)
{
    opj_t1_destroy((opj_t1_t*) t1);
}
 
static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls)
{
    opj_tcd_cblk_dec_t* cblk;
    opj_tcd_band_t* band;
    opj_tcd_tilecomp_t* tilec;
    opj_tccp_t* tccp;
    OPJ_INT32* OPJ_RESTRICT datap;
    OPJ_UINT32 cblk_w, cblk_h;
    OPJ_INT32 x, y;
    OPJ_UINT32 i, j;
    opj_t1_cblk_decode_processing_job_t* job;
    opj_t1_t* t1;
    OPJ_UINT32 resno;
    OPJ_UINT32 tile_w;
 
    job = (opj_t1_cblk_decode_processing_job_t*) user_data;
 
    cblk = job->cblk;
 
    if (!job->whole_tile_decoding) {
        cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
        cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
 
        cblk->decoded_data = (OPJ_INT32*)opj_aligned_malloc(sizeof(OPJ_INT32) *
                             cblk_w * cblk_h);
        if (cblk->decoded_data == NULL) {
            if (job->p_manager_mutex) {
                opj_mutex_lock(job->p_manager_mutex);
            }
            opj_event_msg(job->p_manager, EVT_ERROR,
                          "Cannot allocate cblk->decoded_data\n");
            if (job->p_manager_mutex) {
                opj_mutex_unlock(job->p_manager_mutex);
            }
            *(job->pret) = OPJ_FALSE;
            opj_free(job);
            return;
        }
        /* Zero-init required */
        memset(cblk->decoded_data, 0, sizeof(OPJ_INT32) * cblk_w * cblk_h);
    } else if (cblk->decoded_data) {
        /* Not sure if that code path can happen, but better be */
        /* safe than sorry */
        opj_aligned_free(cblk->decoded_data);
        cblk->decoded_data = NULL;
    }
 
    resno = job->resno;
    band = job->band;
    tilec = job->tilec;
    tccp = job->tccp;
    tile_w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - 1].x1
                          -
                          tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
 
    if (!*(job->pret)) {
        opj_free(job);
        return;
    }
 
    t1 = (opj_t1_t*) opj_tls_get(tls, OPJ_TLS_KEY_T1);
    if (t1 == NULL) {
        t1 = opj_t1_create(OPJ_FALSE);
        if (t1 == NULL) {
            opj_event_msg(job->p_manager, EVT_ERROR,
                          "Cannot allocate Tier 1 handle\n");
            *(job->pret) = OPJ_FALSE;
            opj_free(job);
            return;
        }
        if (!opj_tls_set(tls, OPJ_TLS_KEY_T1, t1, opj_t1_destroy_wrapper)) {
            opj_event_msg(job->p_manager, EVT_ERROR,
                          "Unable to set t1 handle as TLS\n");
            opj_t1_destroy(t1);
            *(job->pret) = OPJ_FALSE;
            opj_free(job);
            return;
        }
    }
    t1->mustuse_cblkdatabuffer = job->mustuse_cblkdatabuffer;
 
    if (OPJ_FALSE == opj_t1_decode_cblk(
                t1,
                cblk,
                band->bandno,
                (OPJ_UINT32)tccp->roishift,
                tccp->cblksty,
                job->p_manager,
                job->p_manager_mutex,
                job->check_pterm)) {
        *(job->pret) = OPJ_FALSE;
        opj_free(job);
        return;
    }
 
    x = cblk->x0 - band->x0;
    y = cblk->y0 - band->y0;
    if (band->bandno & 1) {
        opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
        x += pres->x1 - pres->x0;
    }
    if (band->bandno & 2) {
        opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
        y += pres->y1 - pres->y0;
    }
 
    datap = cblk->decoded_data ? cblk->decoded_data : t1->data;
    cblk_w = t1->w;
    cblk_h = t1->h;
 
    if (tccp->roishift) {
        if (tccp->roishift >= 31) {
            for (j = 0; j < cblk_h; ++j) {
                for (i = 0; i < cblk_w; ++i) {
                    datap[(j * cblk_w) + i] = 0;
                }
            }
        } else {
            OPJ_INT32 thresh = 1 << tccp->roishift;
            for (j = 0; j < cblk_h; ++j) {
                for (i = 0; i < cblk_w; ++i) {
                    OPJ_INT32 val = datap[(j * cblk_w) + i];
                    OPJ_INT32 mag = abs(val);
                    if (mag >= thresh) {
                        mag >>= tccp->roishift;
                        datap[(j * cblk_w) + i] = val < 0 ? -mag : mag;
                    }
                }
            }
        }
    }
 
    /* Both can be non NULL if for example decoding a full tile and then */
    /* partially a tile. In which case partial decoding should be the */
    /* priority */
    assert((cblk->decoded_data != NULL) || (tilec->data != NULL));
 
    if (cblk->decoded_data) {
        OPJ_UINT32 cblk_size = cblk_w * cblk_h;
        if (tccp->qmfbid == 1) {
            for (i = 0; i < cblk_size; ++i) {
                datap[i] /= 2;
            }
        } else {        /* if (tccp->qmfbid == 0) */
            const float stepsize = 0.5f * band->stepsize;
            i = 0;
#ifdef __SSE2__
            {
                const __m128 xmm_stepsize = _mm_set1_ps(stepsize);
                for (; i < (cblk_size & ~15U); i += 16) {
                    __m128 xmm0_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
                                                           datap + 0)));
                    __m128 xmm1_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
                                                           datap + 4)));
                    __m128 xmm2_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
                                                           datap + 8)));
                    __m128 xmm3_data = _mm_cvtepi32_ps(_mm_load_si128((__m128i * const)(
                                                           datap + 12)));
                    _mm_store_ps((float*)(datap +  0), _mm_mul_ps(xmm0_data, xmm_stepsize));
                    _mm_store_ps((float*)(datap +  4), _mm_mul_ps(xmm1_data, xmm_stepsize));
                    _mm_store_ps((float*)(datap +  8), _mm_mul_ps(xmm2_data, xmm_stepsize));
                    _mm_store_ps((float*)(datap + 12), _mm_mul_ps(xmm3_data, xmm_stepsize));
                    datap += 16;
                }
            }
#endif
            for (; i < cblk_size; ++i) {
                OPJ_FLOAT32 tmp = ((OPJ_FLOAT32)(*datap)) * stepsize;
                memcpy(datap, &tmp, sizeof(tmp));
                datap++;
            }
        }
    } else if (tccp->qmfbid == 1) {
        OPJ_INT32* OPJ_RESTRICT tiledp = &tilec->data[(OPJ_SIZE_T)y * tile_w +
                                                       (OPJ_SIZE_T)x];
        for (j = 0; j < cblk_h; ++j) {
            i = 0;
            for (; i < (cblk_w & ~(OPJ_UINT32)3U); i += 4U) {
                OPJ_INT32 tmp0 = datap[(j * cblk_w) + i + 0U];
                OPJ_INT32 tmp1 = datap[(j * cblk_w) + i + 1U];
                OPJ_INT32 tmp2 = datap[(j * cblk_w) + i + 2U];
                OPJ_INT32 tmp3 = datap[(j * cblk_w) + i + 3U];
                ((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 0U] = tmp0 / 2;
                ((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 1U] = tmp1 / 2;
                ((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 2U] = tmp2 / 2;
                ((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i + 3U] = tmp3 / 2;
            }
            for (; i < cblk_w; ++i) {
                OPJ_INT32 tmp = datap[(j * cblk_w) + i];
                ((OPJ_INT32*)tiledp)[(j * (OPJ_SIZE_T)tile_w) + i] = tmp / 2;
            }
        }
    } else {        /* if (tccp->qmfbid == 0) */
        const float stepsize = 0.5f * band->stepsize;
        OPJ_FLOAT32* OPJ_RESTRICT tiledp = (OPJ_FLOAT32*) &tilec->data[(OPJ_SIZE_T)y *
                                                         tile_w + (OPJ_SIZE_T)x];
        for (j = 0; j < cblk_h; ++j) {
            OPJ_FLOAT32* OPJ_RESTRICT tiledp2 = tiledp;
            for (i = 0; i < cblk_w; ++i) {
                OPJ_FLOAT32 tmp = (OPJ_FLOAT32) * datap * stepsize;
                *tiledp2 = tmp;
                datap++;
                tiledp2++;
            }
            tiledp += tile_w;
        }
    }
 
    opj_free(job);
}
 
 
void opj_t1_decode_cblks(opj_tcd_t* tcd,
                         volatile OPJ_BOOL* pret,
                         opj_tcd_tilecomp_t* tilec,
                         opj_tccp_t* tccp,
                         opj_event_mgr_t *p_manager,
                         opj_mutex_t* p_manager_mutex,
                         OPJ_BOOL check_pterm
                        )
{
    opj_thread_pool_t* tp = tcd->thread_pool;
    OPJ_UINT32 resno, bandno, precno, cblkno;
 
#ifdef DEBUG_VERBOSE
    OPJ_UINT32 codeblocks_decoded = 0;
    printf("Enter opj_t1_decode_cblks()\n");
#endif
 
    for (resno = 0; resno < tilec->minimum_num_resolutions; ++resno) {
        opj_tcd_resolution_t* res = &tilec->resolutions[resno];
 
        for (bandno = 0; bandno < res->numbands; ++bandno) {
            opj_tcd_band_t* OPJ_RESTRICT band = &res->bands[bandno];
 
            for (precno = 0; precno < res->pw * res->ph; ++precno) {
                opj_tcd_precinct_t* precinct = &band->precincts[precno];
 
                if (!opj_tcd_is_subband_area_of_interest(tcd,
                        tilec->compno,
                        resno,
                        band->bandno,
                        (OPJ_UINT32)precinct->x0,
                        (OPJ_UINT32)precinct->y0,
                        (OPJ_UINT32)precinct->x1,
                        (OPJ_UINT32)precinct->y1)) {
                    for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
                        opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
                        if (cblk->decoded_data) {
#ifdef DEBUG_VERBOSE
                            printf("Discarding codeblock %d,%d at resno=%d, bandno=%d\n",
                                   cblk->x0, cblk->y0, resno, bandno);
#endif
                            opj_aligned_free(cblk->decoded_data);
                            cblk->decoded_data = NULL;
                        }
                    }
                    continue;
                }
 
                for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
                    opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
                    opj_t1_cblk_decode_processing_job_t* job;
 
                    if (!opj_tcd_is_subband_area_of_interest(tcd,
                            tilec->compno,
                            resno,
                            band->bandno,
                            (OPJ_UINT32)cblk->x0,
                            (OPJ_UINT32)cblk->y0,
                            (OPJ_UINT32)cblk->x1,
                            (OPJ_UINT32)cblk->y1)) {
                        if (cblk->decoded_data) {
#ifdef DEBUG_VERBOSE
                            printf("Discarding codeblock %d,%d at resno=%d, bandno=%d\n",
                                   cblk->x0, cblk->y0, resno, bandno);
#endif
                            opj_aligned_free(cblk->decoded_data);
                            cblk->decoded_data = NULL;
                        }
                        continue;
                    }
 
                    if (!tcd->whole_tile_decoding) {
                        OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
                        OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
                        if (cblk->decoded_data != NULL) {
#ifdef DEBUG_VERBOSE
                            printf("Reusing codeblock %d,%d at resno=%d, bandno=%d\n",
                                   cblk->x0, cblk->y0, resno, bandno);
#endif
                            continue;
                        }
                        if (cblk_w == 0 || cblk_h == 0) {
                            continue;
                        }
#ifdef DEBUG_VERBOSE
                        printf("Decoding codeblock %d,%d at resno=%d, bandno=%d\n",
                               cblk->x0, cblk->y0, resno, bandno);
#endif
                    }
 
                    job = (opj_t1_cblk_decode_processing_job_t*) opj_calloc(1,
                            sizeof(opj_t1_cblk_decode_processing_job_t));
                    if (!job) {
                        *pret = OPJ_FALSE;
                        return;
                    }
                    job->whole_tile_decoding = tcd->whole_tile_decoding;
                    job->resno = resno;
                    job->cblk = cblk;
                    job->band = band;
                    job->tilec = tilec;
                    job->tccp = tccp;
                    job->pret = pret;
                    job->p_manager_mutex = p_manager_mutex;
                    job->p_manager = p_manager;
                    job->check_pterm = check_pterm;
                    job->mustuse_cblkdatabuffer = opj_thread_pool_get_thread_count(tp) > 1;
                    opj_thread_pool_submit_job(tp, opj_t1_clbl_decode_processor, job);
#ifdef DEBUG_VERBOSE
                    codeblocks_decoded ++;
#endif
                    if (!(*pret)) {
                        return;
                    }
                } /* cblkno */
            } /* precno */
        } /* bandno */
    } /* resno */
 
#ifdef DEBUG_VERBOSE
    printf("Leave opj_t1_decode_cblks(). Number decoded: %d\n", codeblocks_decoded);
#endif
    return;
}
 
 
static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
                                   opj_tcd_cblk_dec_t* cblk,
                                   OPJ_UINT32 orient,
                                   OPJ_UINT32 roishift,
                                   OPJ_UINT32 cblksty,
                                   opj_event_mgr_t *p_manager,
                                   opj_mutex_t* p_manager_mutex,
                                   OPJ_BOOL check_pterm)
{
    opj_mqc_t *mqc = &(t1->mqc);   /* MQC component */
 
    OPJ_INT32 bpno_plus_one;
    OPJ_UINT32 passtype;
    OPJ_UINT32 segno, passno;
    OPJ_BYTE* cblkdata = NULL;
    OPJ_UINT32 cblkdataindex = 0;
    OPJ_BYTE type = T1_TYPE_MQ; /* BYPASS mode */
    OPJ_INT32* original_t1_data = NULL;
 
    mqc->lut_ctxno_zc_orient = lut_ctxno_zc + (orient << 9);
 
    if (!opj_t1_allocate_buffers(
                t1,
                (OPJ_UINT32)(cblk->x1 - cblk->x0),
                (OPJ_UINT32)(cblk->y1 - cblk->y0))) {
        return OPJ_FALSE;
    }
 
    bpno_plus_one = (OPJ_INT32)(roishift + cblk->numbps);
    if (bpno_plus_one >= 31) {
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_WARNING,
                      "opj_t1_decode_cblk(): unsupported bpno_plus_one = %d >= 31\n",
                      bpno_plus_one);
        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }
    passtype = 2;
 
    opj_mqc_resetstates(mqc);
    opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
    opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
    opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
 
    /* Even if we have a single chunk, in multi-threaded decoding */
    /* the insertion of our synthetic marker might potentially override */
    /* valid codestream of other codeblocks decoded in parallel. */
    if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) {
        OPJ_UINT32 i;
        OPJ_UINT32 cblk_len;
 
        /* Compute whole codeblock length from chunk lengths */
        cblk_len = 0;
        for (i = 0; i < cblk->numchunks; i++) {
            cblk_len += cblk->chunks[i].len;
        }
 
        /* Allocate temporary memory if needed */
        if (cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA > t1->cblkdatabuffersize) {
            cblkdata = (OPJ_BYTE*)opj_realloc(t1->cblkdatabuffer,
                                              cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA);
            if (cblkdata == NULL) {
                return OPJ_FALSE;
            }
            t1->cblkdatabuffer = cblkdata;
            memset(t1->cblkdatabuffer + cblk_len, 0, OPJ_COMMON_CBLK_DATA_EXTRA);
            t1->cblkdatabuffersize = cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA;
        }
 
        /* Concatenate all chunks */
        cblkdata = t1->cblkdatabuffer;
        cblk_len = 0;
        for (i = 0; i < cblk->numchunks; i++) {
            memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len);
            cblk_len += cblk->chunks[i].len;
        }
    } else if (cblk->numchunks == 1) {
        cblkdata = cblk->chunks[0].data;
    } else {
        /* Not sure if that can happen in practice, but avoid Coverity to */
        /* think we will dereference a null cblkdta pointer */
        return OPJ_TRUE;
    }
 
    /* For subtile decoding, directly decode in the decoded_data buffer of */
    /* the code-block. Hack t1->data to point to it, and restore it later */
    if (cblk->decoded_data) {
        original_t1_data = t1->data;
        t1->data = cblk->decoded_data;
    }
 
    for (segno = 0; segno < cblk->real_num_segs; ++segno) {
        opj_tcd_seg_t *seg = &cblk->segs[segno];
 
        /* BYPASS mode */
        type = ((bpno_plus_one <= ((OPJ_INT32)(cblk->numbps)) - 4) && (passtype < 2) &&
                (cblksty & J2K_CCP_CBLKSTY_LAZY)) ? T1_TYPE_RAW : T1_TYPE_MQ;
 
        if (type == T1_TYPE_RAW) {
            opj_mqc_raw_init_dec(mqc, cblkdata + cblkdataindex, seg->len,
                                 OPJ_COMMON_CBLK_DATA_EXTRA);
        } else {
            opj_mqc_init_dec(mqc, cblkdata + cblkdataindex, seg->len,
                             OPJ_COMMON_CBLK_DATA_EXTRA);
        }
        cblkdataindex += seg->len;
 
        for (passno = 0; (passno < seg->real_num_passes) &&
                (bpno_plus_one >= 1); ++passno) {
            switch (passtype) {
            case 0:
                if (type == T1_TYPE_RAW) {
                    opj_t1_dec_sigpass_raw(t1, bpno_plus_one, (OPJ_INT32)cblksty);
                } else {
                    opj_t1_dec_sigpass_mqc(t1, bpno_plus_one, (OPJ_INT32)cblksty);
                }
                break;
            case 1:
                if (type == T1_TYPE_RAW) {
                    opj_t1_dec_refpass_raw(t1, bpno_plus_one);
                } else {
                    opj_t1_dec_refpass_mqc(t1, bpno_plus_one);
                }
                break;
            case 2:
                opj_t1_dec_clnpass(t1, bpno_plus_one, (OPJ_INT32)cblksty);
                break;
            }
 
            if ((cblksty & J2K_CCP_CBLKSTY_RESET) && type == T1_TYPE_MQ) {
                opj_mqc_resetstates(mqc);
                opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
                opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
                opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
            }
            if (++passtype == 3) {
                passtype = 0;
                bpno_plus_one--;
            }
        }
 
        opq_mqc_finish_dec(mqc);
    }
 
    if (check_pterm) {
        if (mqc->bp + 2 < mqc->end) {
            if (p_manager_mutex) {
                opj_mutex_lock(p_manager_mutex);
            }
            opj_event_msg(p_manager, EVT_WARNING,
                          "PTERM check failure: %d remaining bytes in code block (%d used / %d)\n",
                          (int)(mqc->end - mqc->bp) - 2,
                          (int)(mqc->bp - mqc->start),
                          (int)(mqc->end - mqc->start));
            if (p_manager_mutex) {
                opj_mutex_unlock(p_manager_mutex);
            }
        } else if (mqc->end_of_byte_stream_counter > 2) {
            if (p_manager_mutex) {
                opj_mutex_lock(p_manager_mutex);
            }
            opj_event_msg(p_manager, EVT_WARNING,
                          "PTERM check failure: %d synthetized 0xFF markers read\n",
                          mqc->end_of_byte_stream_counter);
            if (p_manager_mutex) {
                opj_mutex_unlock(p_manager_mutex);
            }
        }
    }
 
    /* Restore original t1->data is needed */
    if (cblk->decoded_data) {
        t1->data = original_t1_data;
    }
 
    return OPJ_TRUE;
}
 
 
typedef struct {
    OPJ_UINT32 compno;
    OPJ_UINT32 resno;
    opj_tcd_cblk_enc_t* cblk;
    opj_tcd_tile_t *tile;
    opj_tcd_band_t* band;
    opj_tcd_tilecomp_t* tilec;
    opj_tccp_t* tccp;
    const OPJ_FLOAT64 * mct_norms;
    OPJ_UINT32 mct_numcomps;
    volatile OPJ_BOOL* pret;
    opj_mutex_t* mutex;
} opj_t1_cblk_encode_processing_job_t;
 
/** Procedure to deal with a asynchronous code-block encoding job.
 *
 * @param user_data Pointer to a opj_t1_cblk_encode_processing_job_t* structure
 * @param tls       TLS handle.
 */
static void opj_t1_cblk_encode_processor(void* user_data, opj_tls_t* tls)
{
    opj_t1_cblk_encode_processing_job_t* job =
        (opj_t1_cblk_encode_processing_job_t*)user_data;
    opj_tcd_cblk_enc_t* cblk = job->cblk;
    const opj_tcd_band_t* band = job->band;
    const opj_tcd_tilecomp_t* tilec = job->tilec;
    const opj_tccp_t* tccp = job->tccp;
    const OPJ_UINT32 resno = job->resno;
    opj_t1_t* t1;
    const OPJ_UINT32 tile_w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
 
    OPJ_INT32* OPJ_RESTRICT tiledp;
    OPJ_UINT32 cblk_w;
    OPJ_UINT32 cblk_h;
    OPJ_UINT32 i, j;
 
    OPJ_INT32 x = cblk->x0 - band->x0;
    OPJ_INT32 y = cblk->y0 - band->y0;
 
    if (!*(job->pret)) {
        opj_free(job);
        return;
    }
 
    t1 = (opj_t1_t*) opj_tls_get(tls, OPJ_TLS_KEY_T1);
    if (t1 == NULL) {
        t1 = opj_t1_create(OPJ_TRUE); /* OPJ_TRUE == T1 for encoding */
        opj_tls_set(tls, OPJ_TLS_KEY_T1, t1, opj_t1_destroy_wrapper);
    }
 
    if (band->bandno & 1) {
        opj_tcd_resolution_t *pres = &tilec->resolutions[resno - 1];
        x += pres->x1 - pres->x0;
    }
    if (band->bandno & 2) {
        opj_tcd_resolution_t *pres = &tilec->resolutions[resno - 1];
        y += pres->y1 - pres->y0;
    }
 
    if (!opj_t1_allocate_buffers(
                t1,
                (OPJ_UINT32)(cblk->x1 - cblk->x0),
                (OPJ_UINT32)(cblk->y1 - cblk->y0))) {
        *(job->pret) = OPJ_FALSE;
        opj_free(job);
        return;
    }
 
    cblk_w = t1->w;
    cblk_h = t1->h;
 
    tiledp = &tilec->data[(OPJ_SIZE_T)y * tile_w + (OPJ_SIZE_T)x];
 
    if (tccp->qmfbid == 1) {
        /* Do multiplication on unsigned type, even if the
            * underlying type is signed, to avoid potential
            * int overflow on large value (the output will be
            * incorrect in such situation, but whatever...)
            * This assumes complement-to-2 signed integer
            * representation
            * Fixes https://github.com/uclouvain/openjpeg/issues/1053
            */
        OPJ_UINT32* OPJ_RESTRICT tiledp_u = (OPJ_UINT32*) tiledp;
        OPJ_UINT32* OPJ_RESTRICT t1data = (OPJ_UINT32*) t1->data;
        /* Change from "natural" order to "zigzag" order of T1 passes */
        for (j = 0; j < (cblk_h & ~3U); j += 4) {
            for (i = 0; i < cblk_w; ++i) {
                t1data[0] = tiledp_u[(j + 0) * tile_w + i] << T1_NMSEDEC_FRACBITS;
                t1data[1] = tiledp_u[(j + 1) * tile_w + i] << T1_NMSEDEC_FRACBITS;
                t1data[2] = tiledp_u[(j + 2) * tile_w + i] << T1_NMSEDEC_FRACBITS;
                t1data[3] = tiledp_u[(j + 3) * tile_w + i] << T1_NMSEDEC_FRACBITS;
                t1data += 4;
            }
        }
        if (j < cblk_h) {
            for (i = 0; i < cblk_w; ++i) {
                OPJ_UINT32 k;
                for (k = j; k < cblk_h; k++) {
                    t1data[0] = tiledp_u[k * tile_w + i] << T1_NMSEDEC_FRACBITS;
                    t1data ++;
                }
            }
        }
    } else {        /* if (tccp->qmfbid == 0) */
        OPJ_FLOAT32* OPJ_RESTRICT tiledp_f = (OPJ_FLOAT32*) tiledp;
        OPJ_INT32* OPJ_RESTRICT t1data = t1->data;
        /* Change from "natural" order to "zigzag" order of T1 passes */
        for (j = 0; j < (cblk_h & ~3U); j += 4) {
            for (i = 0; i < cblk_w; ++i) {
                t1data[0] = (OPJ_INT32)opj_lrintf((tiledp_f[(j + 0) * tile_w + i] /
                                                   band->stepsize) * (1 << T1_NMSEDEC_FRACBITS));
                t1data[1] = (OPJ_INT32)opj_lrintf((tiledp_f[(j + 1) * tile_w + i] /
                                                   band->stepsize) * (1 << T1_NMSEDEC_FRACBITS));
                t1data[2] = (OPJ_INT32)opj_lrintf((tiledp_f[(j + 2) * tile_w + i] /
                                                   band->stepsize) * (1 << T1_NMSEDEC_FRACBITS));
                t1data[3] = (OPJ_INT32)opj_lrintf((tiledp_f[(j + 3) * tile_w + i] /
                                                   band->stepsize) * (1 << T1_NMSEDEC_FRACBITS));
                t1data += 4;
            }
        }
        if (j < cblk_h) {
            for (i = 0; i < cblk_w; ++i) {
                OPJ_UINT32 k;
                for (k = j; k < cblk_h; k++) {
                    t1data[0] = (OPJ_INT32)opj_lrintf((tiledp_f[k * tile_w + i] / band->stepsize)
                                                      * (1 << T1_NMSEDEC_FRACBITS));
                    t1data ++;
                }
            }
        }
    }
 
    {
        OPJ_FLOAT64 cumwmsedec =
            opj_t1_encode_cblk(
                t1,
                cblk,
                band->bandno,
                job->compno,
                tilec->numresolutions - 1 - resno,
                tccp->qmfbid,
                band->stepsize,
                tccp->cblksty,
                job->tile->numcomps,
                job->mct_norms,
                job->mct_numcomps);
        if (job->mutex) {
            opj_mutex_lock(job->mutex);
        }
        job->tile->distotile += cumwmsedec;
        if (job->mutex) {
            opj_mutex_unlock(job->mutex);
        }
    }
 
    opj_free(job);
}
 
 
OPJ_BOOL opj_t1_encode_cblks(opj_tcd_t* tcd,
                             opj_tcd_tile_t *tile,
                             opj_tcp_t *tcp,
                             const OPJ_FLOAT64 * mct_norms,
                             OPJ_UINT32 mct_numcomps
                            )
{
    volatile OPJ_BOOL ret = OPJ_TRUE;
    opj_thread_pool_t* tp = tcd->thread_pool;
    OPJ_UINT32 compno, resno, bandno, precno, cblkno;
    opj_mutex_t* mutex = opj_mutex_create();
 
    tile->distotile = 0;        /* fixed_quality */
 
    for (compno = 0; compno < tile->numcomps; ++compno) {
        opj_tcd_tilecomp_t* tilec = &tile->comps[compno];
        opj_tccp_t* tccp = &tcp->tccps[compno];
 
        for (resno = 0; resno < tilec->numresolutions; ++resno) {
            opj_tcd_resolution_t *res = &tilec->resolutions[resno];
 
            for (bandno = 0; bandno < res->numbands; ++bandno) {
                opj_tcd_band_t* OPJ_RESTRICT band = &res->bands[bandno];
 
                /* Skip empty bands */
                if (opj_tcd_is_band_empty(band)) {
                    continue;
                }
                for (precno = 0; precno < res->pw * res->ph; ++precno) {
                    opj_tcd_precinct_t *prc = &band->precincts[precno];
 
                    for (cblkno = 0; cblkno < prc->cw * prc->ch; ++cblkno) {
                        opj_tcd_cblk_enc_t* cblk = &prc->cblks.enc[cblkno];
 
                        opj_t1_cblk_encode_processing_job_t* job =
                            (opj_t1_cblk_encode_processing_job_t*) opj_calloc(1,
                                    sizeof(opj_t1_cblk_encode_processing_job_t));
                        if (!job) {
                            ret = OPJ_FALSE;
                            goto end;
                        }
                        job->compno = compno;
                        job->tile = tile;
                        job->resno = resno;
                        job->cblk = cblk;
                        job->band = band;
                        job->tilec = tilec;
                        job->tccp = tccp;
                        job->mct_norms = mct_norms;
                        job->mct_numcomps = mct_numcomps;
                        job->pret = &ret;
                        job->mutex = mutex;
                        opj_thread_pool_submit_job(tp, opj_t1_cblk_encode_processor, job);
 
                    } /* cblkno */
                } /* precno */
            } /* bandno */
        } /* resno  */
    } /* compno  */
 
end:
    opj_thread_pool_wait_completion(tcd->thread_pool, 0);
    if (mutex) {
        opj_mutex_destroy(mutex);
    }
 
    return ret;
}
 
/* Returns whether the pass (bpno, passtype) is terminated */
static int opj_t1_enc_is_term_pass(opj_tcd_cblk_enc_t* cblk,
                                   OPJ_UINT32 cblksty,
                                   OPJ_INT32 bpno,
                                   OPJ_UINT32 passtype)
{
    /* Is it the last cleanup pass ? */
    if (passtype == 2 && bpno == 0) {
        return OPJ_TRUE;
    }
 
    if (cblksty & J2K_CCP_CBLKSTY_TERMALL) {
        return OPJ_TRUE;
    }
 
    if ((cblksty & J2K_CCP_CBLKSTY_LAZY)) {
        /* For bypass arithmetic bypass, terminate the 4th cleanup pass */
        if ((bpno == ((OPJ_INT32)cblk->numbps - 4)) && (passtype == 2)) {
            return OPJ_TRUE;
        }
        /* and beyond terminate all the magnitude refinement passes (in raw) */
        /* and cleanup passes (in MQC) */
        if ((bpno < ((OPJ_INT32)(cblk->numbps) - 4)) && (passtype > 0)) {
            return OPJ_TRUE;
        }
    }
 
    return OPJ_FALSE;
}
 
 
/** mod fixed_quality */
static OPJ_FLOAT64 opj_t1_encode_cblk(opj_t1_t *t1,
                                      opj_tcd_cblk_enc_t* cblk,
                                      OPJ_UINT32 orient,
                                      OPJ_UINT32 compno,
                                      OPJ_UINT32 level,
                                      OPJ_UINT32 qmfbid,
                                      OPJ_FLOAT64 stepsize,
                                      OPJ_UINT32 cblksty,
                                      OPJ_UINT32 numcomps,
                                      const OPJ_FLOAT64 * mct_norms,
                                      OPJ_UINT32 mct_numcomps)
{
    OPJ_FLOAT64 cumwmsedec = 0.0;
 
    opj_mqc_t *mqc = &(t1->mqc);   /* MQC component */
 
    OPJ_UINT32 passno;
    OPJ_INT32 bpno;
    OPJ_UINT32 passtype;
    OPJ_INT32 nmsedec = 0;
    OPJ_INT32 max;
    OPJ_UINT32 i, j;
    OPJ_BYTE type = T1_TYPE_MQ;
    OPJ_FLOAT64 tempwmsedec;
    OPJ_INT32* datap;
 
#ifdef EXTRA_DEBUG
    printf("encode_cblk(x=%d,y=%d,x1=%d,y1=%d,orient=%d,compno=%d,level=%d\n",
           cblk->x0, cblk->y0, cblk->x1, cblk->y1, orient, compno, level);
#endif
 
    mqc->lut_ctxno_zc_orient = lut_ctxno_zc + (orient << 9);
 
    max = 0;
    datap = t1->data;
    for (j = 0; j < t1->h; ++j) {
        const OPJ_UINT32 w = t1->w;
        for (i = 0; i < w; ++i, ++datap) {
            OPJ_INT32 tmp = *datap;
            if (tmp < 0) {
                OPJ_UINT32 tmp_unsigned;
                max = opj_int_max(max, -tmp);
                tmp_unsigned = opj_to_smr(tmp);
                memcpy(datap, &tmp_unsigned, sizeof(OPJ_INT32));
            } else {
                max = opj_int_max(max, tmp);
            }
        }
    }
 
    cblk->numbps = max ? (OPJ_UINT32)((opj_int_floorlog2(max) + 1) -
                                      T1_NMSEDEC_FRACBITS) : 0;
    if (cblk->numbps == 0) {
        cblk->totalpasses = 0;
        return cumwmsedec;
    }
 
    bpno = (OPJ_INT32)(cblk->numbps - 1);
    passtype = 2;
 
    opj_mqc_resetstates(mqc);
    opj_mqc_setstate(mqc, T1_CTXNO_UNI, 0, 46);
    opj_mqc_setstate(mqc, T1_CTXNO_AGG, 0, 3);
    opj_mqc_setstate(mqc, T1_CTXNO_ZC, 0, 4);
    opj_mqc_init_enc(mqc, cblk->data);
 
    for (passno = 0; bpno >= 0; ++passno) {
        opj_tcd_pass_t *pass = &cblk->passes[passno];
        type = ((bpno < ((OPJ_INT32)(cblk->numbps) - 4)) && (passtype < 2) &&
                (cblksty & J2K_CCP_CBLKSTY_LAZY)) ? T1_TYPE_RAW : T1_TYPE_MQ;
 
        /* If the previous pass was terminating, we need to reset the encoder */
        if (passno > 0 && cblk->passes[passno - 1].term) {
            if (type == T1_TYPE_RAW) {
                opj_mqc_bypass_init_enc(mqc);
            } else {
                opj_mqc_restart_init_enc(mqc);
            }
        }
 
        switch (passtype) {
        case 0:
            opj_t1_enc_sigpass(t1, bpno, &nmsedec, type, cblksty);
            break;
        case 1:
            opj_t1_enc_refpass(t1, bpno, &nmsedec, type);
            break;
        case 2:
            opj_t1_enc_clnpass(t1, bpno, &nmsedec, cblksty);
            /* code switch SEGMARK (i.e. SEGSYM) */
            if (cblksty & J2K_CCP_CBLKSTY_SEGSYM) {
                opj_mqc_segmark_enc(mqc);
            }
            break;
        }
 
        /* fixed_quality */
        tempwmsedec = opj_t1_getwmsedec(nmsedec, compno, level, orient, bpno, qmfbid,
                                        stepsize, numcomps, mct_norms, mct_numcomps) ;
        cumwmsedec += tempwmsedec;
        pass->distortiondec = cumwmsedec;
 
        if (opj_t1_enc_is_term_pass(cblk, cblksty, bpno, passtype)) {
            /* If it is a terminated pass, terminate it */
            if (type == T1_TYPE_RAW) {
                opj_mqc_bypass_flush_enc(mqc, cblksty & J2K_CCP_CBLKSTY_PTERM);
            } else {
                if (cblksty & J2K_CCP_CBLKSTY_PTERM) {
                    opj_mqc_erterm_enc(mqc);
                } else {
                    opj_mqc_flush(mqc);
                }
            }
            pass->term = 1;
            pass->rate = opj_mqc_numbytes(mqc);
        } else {
            /* Non terminated pass */
            OPJ_UINT32 rate_extra_bytes;
            if (type == T1_TYPE_RAW) {
                rate_extra_bytes = opj_mqc_bypass_get_extra_bytes(
                                       mqc, (cblksty & J2K_CCP_CBLKSTY_PTERM));
            } else {
                rate_extra_bytes = 3;
            }
            pass->term = 0;
            pass->rate = opj_mqc_numbytes(mqc) + rate_extra_bytes;
        }
 
        if (++passtype == 3) {
            passtype = 0;
            bpno--;
        }
 
        /* Code-switch "RESET" */
        if (cblksty & J2K_CCP_CBLKSTY_RESET) {
            opj_mqc_reset_enc(mqc);
        }
    }
 
    cblk->totalpasses = passno;
 
    if (cblk->totalpasses) {
        /* Make sure that pass rates are increasing */
        OPJ_UINT32 last_pass_rate = opj_mqc_numbytes(mqc);
        for (passno = cblk->totalpasses; passno > 0;) {
            opj_tcd_pass_t *pass = &cblk->passes[--passno];
            if (pass->rate > last_pass_rate) {
                pass->rate = last_pass_rate;
            } else {
                last_pass_rate = pass->rate;
            }
        }
    }
 
    for (passno = 0; passno < cblk->totalpasses; passno++) {
        opj_tcd_pass_t *pass = &cblk->passes[passno];
 
        /* Prevent generation of FF as last data byte of a pass*/
        /* For terminating passes, the flushing procedure ensured this already */
        assert(pass->rate > 0);
        if (cblk->data[pass->rate - 1] == 0xFF) {
            pass->rate--;
        }
        pass->len = pass->rate - (passno == 0 ? 0 : cblk->passes[passno - 1].rate);
    }
 
#ifdef EXTRA_DEBUG
    printf(" len=%d\n", (cblk->totalpasses) ? opj_mqc_numbytes(mqc) : 0);
 
    /* Check that there not 0xff >=0x90 sequences */
    if (cblk->totalpasses) {
        OPJ_UINT32 i;
        OPJ_UINT32 len = opj_mqc_numbytes(mqc);
        for (i = 1; i < len; ++i) {
            if (cblk->data[i - 1] == 0xff && cblk->data[i] >= 0x90) {
                printf("0xff %02x at offset %d\n", cblk->data[i], i - 1);
                abort();
            }
        }
    }
#endif
 
    return cumwmsedec;
}

V1032 The pointer 'datap' is cast to a more strictly aligned pointer type.

V1003 The macro 'T1_FLAGS' is a dangerous expression. The parameters 'x', 'y' must be surrounded by parentheses.

V506 Pointer to local variable 'ret' is stored outside the scope of this variable. Such a pointer will become invalid.

V522 Dereferencing of the null pointer 't1' might take place. The potential null pointer is passed into 'opj_t1_allocate_buffers' function. Inspect the first argument. Check lines: 1446, 2167.

V602 Consider inspecting the 'opj_thread_pool_get_thread_count(tp) > 1' expression. '>' possibly should be replaced with '>>'.