/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
* Copyright (c) 2012, CS Systemes d'Information, France
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif
#include "opj_includes.h"
/* <summary> */
/* This table contains the norms of the basis function of the reversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };
/* <summary> */
/* This table contains the norms of the basis function of the irreversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };
const OPJ_FLOAT64 * opj_mct_get_mct_norms()
{
return opj_mct_norms;
}
const OPJ_FLOAT64 * opj_mct_get_mct_norms_real()
{
return opj_mct_norms_real;
}
/* <summary> */
/* Forward reversible MCT. */
/* </summary> */
#ifdef __SSE2__
void opj_mct_encode(
OPJ_INT32* OPJ_RESTRICT c0,
OPJ_INT32* OPJ_RESTRICT c1,
OPJ_INT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
const OPJ_SIZE_T len = n;
/* buffer are aligned on 16 bytes */
assert(((size_t)c0 & 0xf) == 0);
assert(((size_t)c1 & 0xf) == 0);
assert(((size_t)c2 & 0xf) == 0);
for (i = 0; i < (len & ~3U); i += 4) {
__m128i y, u, v;
__m128i r = _mm_load_si128((const __m128i *) & (c0[i]));
__m128i g = _mm_load_si128((const __m128i *) & (c1[i]));
__m128i b = _mm_load_si128((const __m128i *) & (c2[i]));
y = _mm_add_epi32(g, g);
y = _mm_add_epi32(y, b);
y = _mm_add_epi32(y, r);
y = _mm_srai_epi32(y, 2);
u = _mm_sub_epi32(b, g);
v = _mm_sub_epi32(r, g);
_mm_store_si128((__m128i *) & (c0[i]), y);
_mm_store_si128((__m128i *) & (c1[i]), u);
_mm_store_si128((__m128i *) & (c2[i]), v);
}
for (; i < len; ++i) {
OPJ_INT32 r = c0[i];
OPJ_INT32 g = c1[i];
OPJ_INT32 b = c2[i];
OPJ_INT32 y = (r + (g * 2) + b) >> 2;
OPJ_INT32 u = b - g;
OPJ_INT32 v = r - g;
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
#else
void opj_mct_encode(
OPJ_INT32* OPJ_RESTRICT c0,
OPJ_INT32* OPJ_RESTRICT c1,
OPJ_INT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
const OPJ_SIZE_T len = n;
for (i = 0; i < len; ++i) {
OPJ_INT32 r = c0[i];
OPJ_INT32 g = c1[i];
OPJ_INT32 b = c2[i];
OPJ_INT32 y = (r + (g * 2) + b) >> 2;
OPJ_INT32 u = b - g;
OPJ_INT32 v = r - g;
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
#endif
/* <summary> */
/* Inverse reversible MCT. */
/* </summary> */
#ifdef __SSE2__
void opj_mct_decode(
OPJ_INT32* OPJ_RESTRICT c0,
OPJ_INT32* OPJ_RESTRICT c1,
OPJ_INT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
const OPJ_SIZE_T len = n;
for (i = 0; i < (len & ~3U); i += 4) {
__m128i r, g, b;
__m128i y = _mm_load_si128((const __m128i *) & (c0[i]));
__m128i u = _mm_load_si128((const __m128i *) & (c1[i]));
__m128i v = _mm_load_si128((const __m128i *) & (c2[i]));
g = y;
g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2));
r = _mm_add_epi32(v, g);
b = _mm_add_epi32(u, g);
_mm_store_si128((__m128i *) & (c0[i]), r);
_mm_store_si128((__m128i *) & (c1[i]), g);
_mm_store_si128((__m128i *) & (c2[i]), b);
}
for (; i < len; ++i) {
OPJ_INT32 y = c0[i];
OPJ_INT32 u = c1[i];
OPJ_INT32 v = c2[i];
OPJ_INT32 g = y - ((u + v) >> 2);
OPJ_INT32 r = v + g;
OPJ_INT32 b = u + g;
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
#else
void opj_mct_decode(
OPJ_INT32* OPJ_RESTRICT c0,
OPJ_INT32* OPJ_RESTRICT c1,
OPJ_INT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
for (i = 0; i < n; ++i) {
OPJ_INT32 y = c0[i];
OPJ_INT32 u = c1[i];
OPJ_INT32 v = c2[i];
OPJ_INT32 g = y - ((u + v) >> 2);
OPJ_INT32 r = v + g;
OPJ_INT32 b = u + g;
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
#endif
/* <summary> */
/* Get norm of basis function of reversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno)
{
return opj_mct_norms[compno];
}
/* <summary> */
/* Forward irreversible MCT. */
/* </summary> */
void opj_mct_encode_real(
OPJ_FLOAT32* OPJ_RESTRICT c0,
OPJ_FLOAT32* OPJ_RESTRICT c1,
OPJ_FLOAT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
#ifdef __SSE__
const __m128 YR = _mm_set1_ps(0.299f);
const __m128 YG = _mm_set1_ps(0.587f);
const __m128 YB = _mm_set1_ps(0.114f);
const __m128 UR = _mm_set1_ps(-0.16875f);
const __m128 UG = _mm_set1_ps(-0.331260f);
const __m128 UB = _mm_set1_ps(0.5f);
const __m128 VR = _mm_set1_ps(0.5f);
const __m128 VG = _mm_set1_ps(-0.41869f);
const __m128 VB = _mm_set1_ps(-0.08131f);
for (i = 0; i < (n >> 3); i ++) {
__m128 r, g, b, y, u, v;
r = _mm_load_ps(c0);
g = _mm_load_ps(c1);
b = _mm_load_ps(c2);
y = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, YR), _mm_mul_ps(g, YG)),
_mm_mul_ps(b, YB));
u = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, UR), _mm_mul_ps(g, UG)),
_mm_mul_ps(b, UB));
v = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, VR), _mm_mul_ps(g, VG)),
_mm_mul_ps(b, VB));
_mm_store_ps(c0, y);
_mm_store_ps(c1, u);
_mm_store_ps(c2, v);
c0 += 4;
c1 += 4;
c2 += 4;
r = _mm_load_ps(c0);
g = _mm_load_ps(c1);
b = _mm_load_ps(c2);
y = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, YR), _mm_mul_ps(g, YG)),
_mm_mul_ps(b, YB));
u = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, UR), _mm_mul_ps(g, UG)),
_mm_mul_ps(b, UB));
v = _mm_add_ps(_mm_add_ps(_mm_mul_ps(r, VR), _mm_mul_ps(g, VG)),
_mm_mul_ps(b, VB));
_mm_store_ps(c0, y);
_mm_store_ps(c1, u);
_mm_store_ps(c2, v);
c0 += 4;
c1 += 4;
c2 += 4;
}
n &= 7;
#endif
for (i = 0; i < n; ++i) {
OPJ_FLOAT32 r = c0[i];
OPJ_FLOAT32 g = c1[i];
OPJ_FLOAT32 b = c2[i];
OPJ_FLOAT32 y = 0.299f * r + 0.587f * g + 0.114f * b;
OPJ_FLOAT32 u = -0.16875f * r - 0.331260f * g + 0.5f * b;
OPJ_FLOAT32 v = 0.5f * r - 0.41869f * g - 0.08131f * b;
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
/* <summary> */
/* Inverse irreversible MCT. */
/* </summary> */
void opj_mct_decode_real(
OPJ_FLOAT32* OPJ_RESTRICT c0,
OPJ_FLOAT32* OPJ_RESTRICT c1,
OPJ_FLOAT32* OPJ_RESTRICT c2,
OPJ_SIZE_T n)
{
OPJ_SIZE_T i;
#ifdef __SSE__
__m128 vrv, vgu, vgv, vbu;
vrv = _mm_set1_ps(1.402f);
vgu = _mm_set1_ps(0.34413f);
vgv = _mm_set1_ps(0.71414f);
vbu = _mm_set1_ps(1.772f);
for (i = 0; i < (n >> 3); ++i) {
__m128 vy, vu, vv;
__m128 vr, vg, vb;
vy = _mm_load_ps(c0);
vu = _mm_load_ps(c1);
vv = _mm_load_ps(c2);
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
_mm_store_ps(c0, vr);
_mm_store_ps(c1, vg);
_mm_store_ps(c2, vb);
c0 += 4;
c1 += 4;
c2 += 4;
vy = _mm_load_ps(c0);
vu = _mm_load_ps(c1);
vv = _mm_load_ps(c2);
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
_mm_store_ps(c0, vr);
_mm_store_ps(c1, vg);
_mm_store_ps(c2, vb);
c0 += 4;
c1 += 4;
c2 += 4;
}
n &= 7;
#endif
for (i = 0; i < n; ++i) {
OPJ_FLOAT32 y = c0[i];
OPJ_FLOAT32 u = c1[i];
OPJ_FLOAT32 v = c2[i];
OPJ_FLOAT32 r = y + (v * 1.402f);
OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
OPJ_FLOAT32 b = y + (u * 1.772f);
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
/* <summary> */
/* Get norm of basis function of irreversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno)
{
return opj_mct_norms_real[compno];
}
OPJ_BOOL opj_mct_encode_custom(
OPJ_BYTE * pCodingdata,
OPJ_SIZE_T n,
OPJ_BYTE ** pData,
OPJ_UINT32 pNbComp,
OPJ_UINT32 isSigned)
{
OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
OPJ_SIZE_T i;
OPJ_UINT32 j;
OPJ_UINT32 k;
OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
OPJ_INT32 * lCurrentData = 00;
OPJ_INT32 * lCurrentMatrix = 00;
OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
OPJ_UINT32 lMultiplicator = 1 << 13;
OPJ_INT32 * lMctPtr;
OPJ_ARG_NOT_USED(isSigned);
lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(
OPJ_INT32));
if (! lCurrentData) {
return OPJ_FALSE;
}
lCurrentMatrix = lCurrentData + pNbComp;
for (i = 0; i < lNbMatCoeff; ++i) {
lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
}
for (i = 0; i < n; ++i) {
lMctPtr = lCurrentMatrix;
for (j = 0; j < pNbComp; ++j) {
lCurrentData[j] = (*(lData[j]));
}
for (j = 0; j < pNbComp; ++j) {
*(lData[j]) = 0;
for (k = 0; k < pNbComp; ++k) {
*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
++lMctPtr;
}
++lData[j];
}
}
opj_free(lCurrentData);
return OPJ_TRUE;
}
OPJ_BOOL opj_mct_decode_custom(
OPJ_BYTE * pDecodingData,
OPJ_SIZE_T n,
OPJ_BYTE ** pData,
OPJ_UINT32 pNbComp,
OPJ_UINT32 isSigned)
{
OPJ_FLOAT32 * lMct;
OPJ_SIZE_T i;
OPJ_UINT32 j;
OPJ_UINT32 k;
OPJ_FLOAT32 * lCurrentData = 00;
OPJ_FLOAT32 * lCurrentResult = 00;
OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
OPJ_ARG_NOT_USED(isSigned);
lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32));
if (! lCurrentData) {
return OPJ_FALSE;
}
lCurrentResult = lCurrentData + pNbComp;
for (i = 0; i < n; ++i) {
lMct = (OPJ_FLOAT32 *) pDecodingData;
for (j = 0; j < pNbComp; ++j) {
lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j]));
}
for (j = 0; j < pNbComp; ++j) {
lCurrentResult[j] = 0;
for (k = 0; k < pNbComp; ++k) {
lCurrentResult[j] += *(lMct++) * lCurrentData[k];
}
*(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]);
}
}
opj_free(lCurrentData);
return OPJ_TRUE;
}
void opj_calculate_norms(OPJ_FLOAT64 * pNorms,
OPJ_UINT32 pNbComps,
OPJ_FLOAT32 * pMatrix)
{
OPJ_UINT32 i, j, lIndex;
OPJ_FLOAT32 lCurrentValue;
OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
for (i = 0; i < pNbComps; ++i) {
lNorms[i] = 0;
lIndex = i;
for (j = 0; j < pNbComps; ++j) {
lCurrentValue = lMatrix[lIndex];
lIndex += pNbComps;
lNorms[i] += lCurrentValue * lCurrentValue;
}
lNorms[i] = sqrt(lNorms[i]);
}
}
↑ V525 The code contains the collection of similar blocks. Check items '_mm_add_epi32', '_mm_add_epi32', '_mm_add_epi32', '_mm_srai_epi32', '_mm_sub_epi32', '_mm_sub_epi32' in lines 94, 95, 96, 97, 98, 99.
↑ V656 Variables 'UB', 'VR' are initialized through the call to the same function. It's probably an error or un-optimized code. Consider inspecting the '_mm_set_ps1(0.5f)' expression. Check lines: 225, 226.