/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
 * Copyright (c) 2017, IntoPIX SA <support@intopix.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
 
#include <assert.h>
 
#define OPJ_SKIP_POISON
#include "opj_includes.h"
 
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
 
#if defined(__GNUC__)
#pragma GCC poison malloc calloc realloc free
#endif
 
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/
 
#define OPJ_WS(i) v->mem[(i)*2]
#define OPJ_WD(i) v->mem[(1+(i)*2)]
 
#ifdef __AVX2__
/** Number of int32 values in a AVX2 register */
#define VREG_INT_COUNT       8
#else
/** Number of int32 values in a SSE2 register */
#define VREG_INT_COUNT       4
#endif
 
/** Number of columns that we can process in parallel in the vertical pass */
#define PARALLEL_COLS_53     (2*VREG_INT_COUNT)
 
/** @name Local data structures */
/*@{*/
 
typedef struct dwt_local {
    OPJ_INT32* mem;
    OPJ_INT32 dn;   /* number of elements in high pass band */
    OPJ_INT32 sn;   /* number of elements in low pass band */
    OPJ_INT32 cas;  /* 0 = start on even coord, 1 = start on odd coord */
} opj_dwt_t;
 
#define NB_ELTS_V8  8
 
typedef union {
    OPJ_FLOAT32 f[NB_ELTS_V8];
} opj_v8_t;
 
typedef struct v8dwt_local {
    opj_v8_t*   wavelet ;
    OPJ_INT32       dn ;  /* number of elements in high pass band */
    OPJ_INT32       sn ;  /* number of elements in low pass band */
    OPJ_INT32       cas ; /* 0 = start on even coord, 1 = start on odd coord */
    OPJ_UINT32      win_l_x0; /* start coord in low pass band */
    OPJ_UINT32      win_l_x1; /* end coord in low pass band */
    OPJ_UINT32      win_h_x0; /* start coord in high pass band */
    OPJ_UINT32      win_h_x1; /* end coord in high pass band */
} opj_v8dwt_t ;
 
/* From table F.4 from the standard */
static const OPJ_FLOAT32 opj_dwt_alpha =  -1.586134342f;
static const OPJ_FLOAT32 opj_dwt_beta  =  -0.052980118f;
static const OPJ_FLOAT32 opj_dwt_gamma = 0.882911075f;
static const OPJ_FLOAT32 opj_dwt_delta = 0.443506852f;
 
static const OPJ_FLOAT32 opj_K      = 1.230174105f;
static const OPJ_FLOAT32 opj_invK   = (OPJ_FLOAT32)(1.0 / 1.230174105);
 
/*@}*/
 
/** @name Local static functions */
/*@{*/
 
/**
Forward lazy transform (horizontal)
*/
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a,
                                   OPJ_INT32 * OPJ_RESTRICT b,
                                   OPJ_INT32 dn,
                                   OPJ_INT32 sn, OPJ_INT32 cas);
 
/**
Forward 9-7 wavelet transform in 1-D
*/
static void opj_dwt_encode_1_real(void *a, OPJ_INT32 dn, OPJ_INT32 sn,
                                  OPJ_INT32 cas);
/**
Explicit calculation of the Quantization Stepsizes
*/
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
                                    opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
                                    opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
 
static OPJ_BOOL opj_dwt_decode_partial_tile(
    opj_tcd_tilecomp_t* tilec,
    OPJ_UINT32 numres);
 
/* Forward transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */
typedef void (*opj_encode_and_deinterleave_v_fnptr_type)(
    void *array,
    void *tmp,
    OPJ_UINT32 height,
    OPJ_BOOL even,
    OPJ_UINT32 stride_width,
    OPJ_UINT32 cols);
 
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */
typedef void (*opj_encode_and_deinterleave_h_one_row_fnptr_type)(
    void *row,
    void *tmp,
    OPJ_UINT32 width,
    OPJ_BOOL even);
 
static OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp,
        opj_tcd_tilecomp_t * tilec,
        opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v,
        opj_encode_and_deinterleave_h_one_row_fnptr_type
        p_encode_and_deinterleave_h_one_row);
 
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
        OPJ_UINT32 i);
 
/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
 
/*@}*/
 
/*@}*/
 
#define OPJ_S(i) a[(i)*2]
#define OPJ_D(i) a[(1+(i)*2)]
#define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i)))
#define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i)))
/* new */
#define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i)))
#define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i)))
 
/* <summary>                                                              */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary>                                                             */
/* FIXME! the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
    {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
    {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
    {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
    {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};
 
/* <summary>                                                              */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary>                                                             */
/* FIXME! the array should really be extended up to 33 resolution levels */
/* See https://github.com/uclouvain/openjpeg/issues/493 */
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
    {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
    {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
    {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
    {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};
 
/*
==========================================================
   local functions
==========================================================
*/
 
/* <summary>                             */
/* Forward lazy transform (horizontal).  */
/* </summary>                            */
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a,
                                   OPJ_INT32 * OPJ_RESTRICT b,
                                   OPJ_INT32 dn,
                                   OPJ_INT32 sn, OPJ_INT32 cas)
{
    OPJ_INT32 i;
    OPJ_INT32 * OPJ_RESTRICT l_dest = b;
    const OPJ_INT32 * OPJ_RESTRICT l_src = a + cas;
 
    for (i = 0; i < sn; ++i) {
        *l_dest++ = *l_src;
        l_src += 2;
    }
 
    l_dest = b + sn;
    l_src = a + 1 - cas;
 
    for (i = 0; i < dn; ++i)  {
        *l_dest++ = *l_src;
        l_src += 2;
    }
}
 
#ifdef STANDARD_SLOW_VERSION
/* <summary>                             */
/* Inverse lazy transform (horizontal).  */
/* </summary>                            */
static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
{
    const OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = h->mem + h->cas;
    OPJ_INT32  i    = h->sn;
    while (i--) {
        *bi = *(ai++);
        bi += 2;
    }
    ai  = a + h->sn;
    bi  = h->mem + 1 - h->cas;
    i   = h->dn ;
    while (i--) {
        *bi = *(ai++);
        bi += 2;
    }
}
 
/* <summary>                             */
/* Inverse lazy transform (vertical).    */
/* </summary>                            */
static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
{
    const OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = v->mem + v->cas;
    OPJ_INT32  i = v->sn;
    while (i--) {
        *bi = *ai;
        bi += 2;
        ai += x;
    }
    ai = a + (v->sn * (OPJ_SIZE_T)x);
    bi = v->mem + 1 - v->cas;
    i = v->dn ;
    while (i--) {
        *bi = *ai;
        bi += 2;
        ai += x;
    }
}
 
#endif /* STANDARD_SLOW_VERSION */
 
#ifdef STANDARD_SLOW_VERSION
/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary>                           */
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
                              OPJ_INT32 cas)
{
    OPJ_INT32 i;
 
    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < sn; i++) {
                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
            }
            for (i = 0; i < dn; i++) {
                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
            }
        }
    } else {
        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
            OPJ_S(0) /= 2;
        } else {
            for (i = 0; i < sn; i++) {
                OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
            }
            for (i = 0; i < dn; i++) {
                OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
            }
        }
    }
}
 
static void opj_dwt_decode_1(const opj_dwt_t *v)
{
    opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
}
 
#endif /* STANDARD_SLOW_VERSION */
 
#if !defined(STANDARD_SLOW_VERSION)
static void  opj_idwt53_h_cas0(OPJ_INT32* tmp,
                               const OPJ_INT32 sn,
                               const OPJ_INT32 len,
                               OPJ_INT32* tiledp)
{
    OPJ_INT32 i, j;
    const OPJ_INT32* in_even = &tiledp[0];
    const OPJ_INT32* in_odd = &tiledp[sn];
 
#ifdef TWO_PASS_VERSION
    /* For documentation purpose: performs lifting in two iterations, */
    /* but without explicit interleaving */
 
    assert(len > 1);
 
    /* Even */
    tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
    for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
        tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
    }
    if (len & 1) { /* if len is odd */
        tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
    }
 
    /* Odd */
    for (i = 1, j = 0; i < len - 1; i += 2, j++) {
        tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
    }
    if (!(len & 1)) { /* if len is even */
        tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
    }
#else
    OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
 
    assert(len > 1);
 
    /* Improved version of the TWO_PASS_VERSION: */
    /* Performs lifting in one single iteration. Saves memory */
    /* accesses and explicit interleaving. */
    s1n = in_even[0];
    d1n = in_odd[0];
    s0n = s1n - ((d1n + 1) >> 1);
 
    for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
        d1c = d1n;
        s0c = s0n;
 
        s1n = in_even[j];
        d1n = in_odd[j];
 
        s0n = s1n - ((d1c + d1n + 2) >> 2);
 
        tmp[i  ] = s0c;
        tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
    }
 
    tmp[i] = s0n;
 
    if (len & 1) {
        tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
        tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
    } else {
        tmp[len - 1] = d1n + s0n;
    }
#endif
    memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
 
static void  opj_idwt53_h_cas1(OPJ_INT32* tmp,
                               const OPJ_INT32 sn,
                               const OPJ_INT32 len,
                               OPJ_INT32* tiledp)
{
    OPJ_INT32 i, j;
    const OPJ_INT32* in_even = &tiledp[sn];
    const OPJ_INT32* in_odd = &tiledp[0];
 
#ifdef TWO_PASS_VERSION
    /* For documentation purpose: performs lifting in two iterations, */
    /* but without explicit interleaving */
 
    assert(len > 2);
 
    /* Odd */
    for (i = 1, j = 0; i < len - 1; i += 2, j++) {
        tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
    }
    if (!(len & 1)) {
        tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
    }
 
    /* Even */
    tmp[0] = in_even[0] + tmp[1];
    for (i = 2, j = 1; i < len - 1; i += 2, j++) {
        tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
    }
    if (len & 1) {
        tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
    }
#else
    OPJ_INT32 s1, s2, dc, dn;
 
    assert(len > 2);
 
    /* Improved version of the TWO_PASS_VERSION: */
    /* Performs lifting in one single iteration. Saves memory */
    /* accesses and explicit interleaving. */
 
    s1 = in_even[1];
    dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
    tmp[0] = in_even[0] + dc;
 
    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
 
        s2 = in_even[j + 1];
 
        dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
        tmp[i  ] = dc;
        tmp[i + 1] = s1 + ((dn + dc) >> 1);
 
        dc = dn;
        s1 = s2;
    }
 
    tmp[i] = dc;
 
    if (!(len & 1)) {
        dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
        tmp[len - 2] = s1 + ((dn + dc) >> 1);
        tmp[len - 1] = dn;
    } else {
        tmp[len - 1] = s1 + dc;
    }
#endif
    memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
 
 
#endif /* !defined(STANDARD_SLOW_VERSION) */
 
/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D for one row. */
/* </summary>                           */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_h(const opj_dwt_t *dwt,
                         OPJ_INT32* tiledp)
{
#ifdef STANDARD_SLOW_VERSION
    /* For documentation purpose */
    opj_dwt_interleave_h(dwt, tiledp);
    opj_dwt_decode_1(dwt);
    memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
#else
    const OPJ_INT32 sn = dwt->sn;
    const OPJ_INT32 len = sn + dwt->dn;
    if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
        if (len > 1) {
            opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
        } else {
            /* Unmodified value */
        }
    } else { /* Left-most sample is on odd coordinate */
        if (len == 1) {
            tiledp[0] /= 2;
        } else if (len == 2) {
            OPJ_INT32* out = dwt->mem;
            const OPJ_INT32* in_even = &tiledp[sn];
            const OPJ_INT32* in_odd = &tiledp[0];
            out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
            out[0] = in_even[0] + out[1];
            memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
        } else if (len > 2) {
            opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
        }
    }
#endif
}
 
#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
 
/* Conveniency macros to improve the readabilty of the formulas */
#if __AVX2__
#define VREG        __m256i
#define LOAD_CST(x) _mm256_set1_epi32(x)
#define LOAD(x)     _mm256_load_si256((const VREG*)(x))
#define LOADU(x)    _mm256_loadu_si256((const VREG*)(x))
#define STORE(x,y)  _mm256_store_si256((VREG*)(x),(y))
#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
#define ADD(x,y)    _mm256_add_epi32((x),(y))
#define SUB(x,y)    _mm256_sub_epi32((x),(y))
#define SAR(x,y)    _mm256_srai_epi32((x),(y))
#else
#define VREG        __m128i
#define LOAD_CST(x) _mm_set1_epi32(x)
#define LOAD(x)     _mm_load_si128((const VREG*)(x))
#define LOADU(x)    _mm_loadu_si128((const VREG*)(x))
#define STORE(x,y)  _mm_store_si128((VREG*)(x),(y))
#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
#define ADD(x,y)    _mm_add_epi32((x),(y))
#define SUB(x,y)    _mm_sub_epi32((x),(y))
#define SAR(x,y)    _mm_srai_epi32((x),(y))
#endif
#define ADD3(x,y,z) ADD(ADD(x,y),z)
 
static
void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
                               const OPJ_INT32* tmp,
                               OPJ_INT32 len,
                               OPJ_SIZE_T stride)
{
    OPJ_INT32 i;
    for (i = 0; i < len; ++i) {
        /* A memcpy(&tiledp_col[i * stride + 0],
                    &tmp[PARALLEL_COLS_53 * i + 0],
                    PARALLEL_COLS_53 * sizeof(OPJ_INT32))
           would do but would be a tiny bit slower.
           We can take here advantage of our knowledge of alignment */
        STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
               LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
        STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
               LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
    }
}
 
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
 * 16 in AVX2, when top-most pixel is on even coordinate */
static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
    OPJ_INT32* tmp,
    const OPJ_INT32 sn,
    const OPJ_INT32 len,
    OPJ_INT32* tiledp_col,
    const OPJ_SIZE_T stride)
{
    const OPJ_INT32* in_even = &tiledp_col[0];
    const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
 
    OPJ_INT32 i;
    OPJ_SIZE_T j;
    VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
    VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
    const VREG two = LOAD_CST(2);
 
    assert(len > 1);
#if __AVX2__
    assert(PARALLEL_COLS_53 == 16);
    assert(VREG_INT_COUNT == 8);
#else
    assert(PARALLEL_COLS_53 == 8);
    assert(VREG_INT_COUNT == 4);
#endif
 
    /* Note: loads of input even/odd values must be done in a unaligned */
    /* fashion. But stores in tmp can be done with aligned store, since */
    /* the temporary buffer is properly aligned */
    assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
 
    s1n_0 = LOADU(in_even + 0);
    s1n_1 = LOADU(in_even + VREG_INT_COUNT);
    d1n_0 = LOADU(in_odd);
    d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
 
    /* s0n = s1n - ((d1n + 1) >> 1); <==> */
    /* s0n = s1n - ((d1n + d1n + 2) >> 2); */
    s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
    s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
 
    for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
        d1c_0 = d1n_0;
        s0c_0 = s0n_0;
        d1c_1 = d1n_1;
        s0c_1 = s0n_1;
 
        s1n_0 = LOADU(in_even + j * stride);
        s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
        d1n_0 = LOADU(in_odd + j * stride);
        d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
 
        /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
        s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
        s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
 
        STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
        STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
 
        /* d1c + ((s0c + s0n) >> 1) */
        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
              ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
              ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
    }
 
    STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
    STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
 
    if (len & 1) {
        VREG tmp_len_minus_1;
        s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
        /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
        tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
        STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
        /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
        STORE(tmp + PARALLEL_COLS_53 * (len - 2),
              ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
 
        s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
        /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
        tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
              tmp_len_minus_1);
        /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
              ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
 
 
    } else {
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
              ADD(d1n_0, s0n_0));
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
              ADD(d1n_1, s0n_1));
    }
 
    opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
 
 
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
 * 16 in AVX2, when top-most pixel is on odd coordinate */
static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
    OPJ_INT32* tmp,
    const OPJ_INT32 sn,
    const OPJ_INT32 len,
    OPJ_INT32* tiledp_col,
    const OPJ_SIZE_T stride)
{
    OPJ_INT32 i;
    OPJ_SIZE_T j;
 
    VREG s1_0, s2_0, dc_0, dn_0;
    VREG s1_1, s2_1, dc_1, dn_1;
    const VREG two = LOAD_CST(2);
 
    const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
    const OPJ_INT32* in_odd = &tiledp_col[0];
 
    assert(len > 2);
#if __AVX2__
    assert(PARALLEL_COLS_53 == 16);
    assert(VREG_INT_COUNT == 8);
#else
    assert(PARALLEL_COLS_53 == 8);
    assert(VREG_INT_COUNT == 4);
#endif
 
    /* Note: loads of input even/odd values must be done in a unaligned */
    /* fashion. But stores in tmp can be done with aligned store, since */
    /* the temporary buffer is properly aligned */
    assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
 
    s1_0 = LOADU(in_even + stride);
    /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
    dc_0 = SUB(LOADU(in_odd + 0),
               SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
    STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
 
    s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
    /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
    dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
               SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
    STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
          ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
 
    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
 
        s2_0 = LOADU(in_even + (j + 1) * stride);
        s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
 
        /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
        dn_0 = SUB(LOADU(in_odd + j * stride),
                   SAR(ADD3(s1_0, s2_0, two), 2));
        dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
                   SAR(ADD3(s1_1, s2_1, two), 2));
 
        STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
        STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
 
        /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
              ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
        STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
              ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
 
        dc_0 = dn_0;
        s1_0 = s2_0;
        dc_1 = dn_1;
        s1_1 = s2_1;
    }
    STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
    STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
 
    if (!(len & 1)) {
        /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
        dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
                   SAR(ADD3(s1_0, s1_0, two), 2));
        dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
                   SAR(ADD3(s1_1, s1_1, two), 2));
 
        /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
              ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
        STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
              ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
 
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
    } else {
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
        STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
              ADD(s1_1, dc_1));
    }
 
    opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
 
#undef VREG
#undef LOAD_CST
#undef LOADU
#undef LOAD
#undef STORE
#undef STOREU
#undef ADD
#undef ADD3
#undef SUB
#undef SAR
 
#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
 
#if !defined(STANDARD_SLOW_VERSION)
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
 * pixel is on even coordinate */
static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
                             const OPJ_INT32 sn,
                             const OPJ_INT32 len,
                             OPJ_INT32* tiledp_col,
                             const OPJ_SIZE_T stride)
{
    OPJ_INT32 i, j;
    OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
 
    assert(len > 1);
 
    /* Performs lifting in one single iteration. Saves memory */
    /* accesses and explicit interleaving. */
 
    s1n = tiledp_col[0];
    d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
    s0n = s1n - ((d1n + 1) >> 1);
 
    for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
        d1c = d1n;
        s0c = s0n;
 
        s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
        d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
 
        s0n = s1n - ((d1c + d1n + 2) >> 2);
 
        tmp[i  ] = s0c;
        tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
    }
 
    tmp[i] = s0n;
 
    if (len & 1) {
        tmp[len - 1] =
            tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
            ((d1n + 1) >> 1);
        tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
    } else {
        tmp[len - 1] = d1n + s0n;
    }
 
    for (i = 0; i < len; ++i) {
        tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
    }
}
 
 
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
 * pixel is on odd coordinate */
static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
                             const OPJ_INT32 sn,
                             const OPJ_INT32 len,
                             OPJ_INT32* tiledp_col,
                             const OPJ_SIZE_T stride)
{
    OPJ_INT32 i, j;
    OPJ_INT32 s1, s2, dc, dn;
    const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
    const OPJ_INT32* in_odd = &tiledp_col[0];
 
    assert(len > 2);
 
    /* Performs lifting in one single iteration. Saves memory */
    /* accesses and explicit interleaving. */
 
    s1 = in_even[stride];
    dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
    tmp[0] = in_even[0] + dc;
    for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
 
        s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
 
        dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
        tmp[i  ] = dc;
        tmp[i + 1] = s1 + ((dn + dc) >> 1);
 
        dc = dn;
        s1 = s2;
    }
    tmp[i] = dc;
    if (!(len & 1)) {
        dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
        tmp[len - 2] = s1 + ((dn + dc) >> 1);
        tmp[len - 1] = dn;
    } else {
        tmp[len - 1] = s1 + dc;
    }
 
    for (i = 0; i < len; ++i) {
        tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
    }
}
#endif /* !defined(STANDARD_SLOW_VERSION) */
 
/* <summary>                            */
/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
/* </summary>                           */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_v(const opj_dwt_t *dwt,
                         OPJ_INT32* tiledp_col,
                         OPJ_SIZE_T stride,
                         OPJ_INT32 nb_cols)
{
#ifdef STANDARD_SLOW_VERSION
    /* For documentation purpose */
    OPJ_INT32 k, c;
    for (c = 0; c < nb_cols; c ++) {
        opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
        opj_dwt_decode_1(dwt);
        for (k = 0; k < dwt->sn + dwt->dn; ++k) {
            tiledp_col[c + k * stride] = dwt->mem[k];
        }
    }
#else
    const OPJ_INT32 sn = dwt->sn;
    const OPJ_INT32 len = sn + dwt->dn;
    if (dwt->cas == 0) {
        /* If len == 1, unmodified value */
 
#if (defined(__SSE2__) || defined(__AVX2__))
        if (len > 1 && nb_cols == PARALLEL_COLS_53) {
            /* Same as below general case, except that thanks to SSE2/AVX2 */
            /* we can efficiently process 8/16 columns in parallel */
            opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
            return;
        }
#endif
        if (len > 1) {
            OPJ_INT32 c;
            for (c = 0; c < nb_cols; c++, tiledp_col++) {
                opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
            }
            return;
        }
    } else {
        if (len == 1) {
            OPJ_INT32 c;
            for (c = 0; c < nb_cols; c++, tiledp_col++) {
                tiledp_col[0] /= 2;
            }
            return;
        }
 
        if (len == 2) {
            OPJ_INT32 c;
            OPJ_INT32* out = dwt->mem;
            for (c = 0; c < nb_cols; c++, tiledp_col++) {
                OPJ_INT32 i;
                const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
                const OPJ_INT32* in_odd = &tiledp_col[0];
 
                out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
                out[0] = in_even[0] + out[1];
 
                for (i = 0; i < len; ++i) {
                    tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
                }
            }
 
            return;
        }
 
#if (defined(__SSE2__) || defined(__AVX2__))
        if (len > 2 && nb_cols == PARALLEL_COLS_53) {
            /* Same as below general case, except that thanks to SSE2/AVX2 */
            /* we can efficiently process 8/16 columns in parallel */
            opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
            return;
        }
#endif
        if (len > 2) {
            OPJ_INT32 c;
            for (c = 0; c < nb_cols; c++, tiledp_col++) {
                opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
            }
            return;
        }
    }
#endif
}
 
#if 0
static void opj_dwt_encode_step1(OPJ_FLOAT32* fw,
                                 OPJ_UINT32 end,
                                 const OPJ_FLOAT32 c)
{
    OPJ_UINT32 i = 0;
    for (; i < end; ++i) {
        fw[0] *= c;
        fw += 2;
    }
}
#else
static void opj_dwt_encode_step1_combined(OPJ_FLOAT32* fw,
        OPJ_UINT32 iters_c1,
        OPJ_UINT32 iters_c2,
        const OPJ_FLOAT32 c1,
        const OPJ_FLOAT32 c2)
{
    OPJ_UINT32 i = 0;
    const OPJ_UINT32 iters_common =  opj_uint_min(iters_c1, iters_c2);
    assert((((OPJ_SIZE_T)fw) & 0xf) == 0);
    assert(opj_int_abs((OPJ_INT32)iters_c1 - (OPJ_INT32)iters_c2) <= 1);
    for (; i + 3 < iters_common; i += 4) {
#ifdef __SSE__
        const __m128 vcst = _mm_set_ps(c2, c1, c2, c1);
        *(__m128*)fw = _mm_mul_ps(*(__m128*)fw, vcst);
        *(__m128*)(fw + 4) = _mm_mul_ps(*(__m128*)(fw + 4), vcst);
#else
        fw[0] *= c1;
        fw[1] *= c2;
        fw[2] *= c1;
        fw[3] *= c2;
        fw[4] *= c1;
        fw[5] *= c2;
        fw[6] *= c1;
        fw[7] *= c2;
#endif
        fw += 8;
    }
    for (; i < iters_common; i++) {
        fw[0] *= c1;
        fw[1] *= c2;
        fw += 2;
    }
    if (i < iters_c1) {
        fw[0] *= c1;
    } else if (i < iters_c2) {
        fw[1] *= c2;
    }
}
 
#endif
 
static void opj_dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw,
                                 OPJ_UINT32 end,
                                 OPJ_UINT32 m,
                                 OPJ_FLOAT32 c)
{
    OPJ_UINT32 i;
    OPJ_UINT32 imax = opj_uint_min(end, m);
    if (imax > 0) {
        fw[-1] += (fl[0] + fw[0]) * c;
        fw += 2;
        i = 1;
        for (; i + 3 < imax; i += 4) {
            fw[-1] += (fw[-2] + fw[0]) * c;
            fw[1] += (fw[0] + fw[2]) * c;
            fw[3] += (fw[2] + fw[4]) * c;
            fw[5] += (fw[4] + fw[6]) * c;
            fw += 8;
        }
        for (; i < imax; ++i) {
            fw[-1] += (fw[-2] + fw[0]) * c;
            fw += 2;
        }
    }
    if (m < end) {
        assert(m + 1 == end);
        fw[-1] += (2 * fw[-2]) * c;
    }
}
 
static void opj_dwt_encode_1_real(void *aIn, OPJ_INT32 dn, OPJ_INT32 sn,
                                  OPJ_INT32 cas)
{
    OPJ_FLOAT32* w = (OPJ_FLOAT32*)aIn;
    OPJ_INT32 a, b;
    assert(dn + sn > 1);
    if (cas == 0) {
        a = 0;
        b = 1;
    } else {
        a = 1;
        b = 0;
    }
    opj_dwt_encode_step2(w + a, w + b + 1,
                         (OPJ_UINT32)dn,
                         (OPJ_UINT32)opj_int_min(dn, sn - b),
                         opj_dwt_alpha);
    opj_dwt_encode_step2(w + b, w + a + 1,
                         (OPJ_UINT32)sn,
                         (OPJ_UINT32)opj_int_min(sn, dn - a),
                         opj_dwt_beta);
    opj_dwt_encode_step2(w + a, w + b + 1,
                         (OPJ_UINT32)dn,
                         (OPJ_UINT32)opj_int_min(dn, sn - b),
                         opj_dwt_gamma);
    opj_dwt_encode_step2(w + b, w + a + 1,
                         (OPJ_UINT32)sn,
                         (OPJ_UINT32)opj_int_min(sn, dn - a),
                         opj_dwt_delta);
#if 0
    opj_dwt_encode_step1(w + b, (OPJ_UINT32)dn,
                         opj_K);
    opj_dwt_encode_step1(w + a, (OPJ_UINT32)sn,
                         opj_invK);
#else
    if (a == 0) {
        opj_dwt_encode_step1_combined(w,
                                      (OPJ_UINT32)sn,
                                      (OPJ_UINT32)dn,
                                      opj_invK,
                                      opj_K);
    } else {
        opj_dwt_encode_step1_combined(w,
                                      (OPJ_UINT32)dn,
                                      (OPJ_UINT32)sn,
                                      opj_K,
                                      opj_invK);
    }
#endif
}
 
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
                                    opj_stepsize_t *bandno_stepsize)
{
    OPJ_INT32 p, n;
    p = opj_int_floorlog2(stepsize) - 13;
    n = 11 - opj_int_floorlog2(stepsize);
    bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
    bandno_stepsize->expn = numbps - p;
}
 
/*
==========================================================
   DWT interface
==========================================================
*/
 
/** Process one line for the horizontal pass of the 5x3 forward transform */
static
void opj_dwt_encode_and_deinterleave_h_one_row(void* rowIn,
        void* tmpIn,
        OPJ_UINT32 width,
        OPJ_BOOL even)
{
    OPJ_INT32* OPJ_RESTRICT row = (OPJ_INT32*)rowIn;
    OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32*)tmpIn;
    const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1);
    const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn);
 
    if (even) {
        if (width > 1) {
            OPJ_INT32 i;
            for (i = 0; i < sn - 1; i++) {
                tmp[sn + i] = row[2 * i + 1] - ((row[(i) * 2] + row[(i + 1) * 2]) >> 1);
            }
            if ((width % 2) == 0) {
                tmp[sn + i] = row[2 * i + 1] - row[(i) * 2];
            }
            row[0] += (tmp[sn] + tmp[sn] + 2) >> 2;
            for (i = 1; i < dn; i++) {
                row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + i] + 2) >> 2);
            }
            if ((width % 2) == 1) {
                row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + (i - 1)] + 2) >> 2);
            }
            memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32));
        }
    } else {
        if (width == 1) {
            row[0] *= 2;
        } else {
            OPJ_INT32 i;
            tmp[sn + 0] = row[0] - row[1];
            for (i = 1; i < sn; i++) {
                tmp[sn + i] = row[2 * i] - ((row[2 * i + 1] + row[2 * (i - 1) + 1]) >> 1);
            }
            if ((width % 2) == 1) {
                tmp[sn + i] = row[2 * i] - row[2 * (i - 1) + 1];
            }
 
            for (i = 0; i < dn - 1; i++) {
                row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i + 1] + 2) >> 2);
            }
            if ((width % 2) == 0) {
                row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i] + 2) >> 2);
            }
            memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32));
        }
    }
}
 
/** Process one line for the horizontal pass of the 9x7 forward transform */
static
void opj_dwt_encode_and_deinterleave_h_one_row_real(void* rowIn,
        void* tmpIn,
        OPJ_UINT32 width,
        OPJ_BOOL even)
{
    OPJ_FLOAT32* OPJ_RESTRICT row = (OPJ_FLOAT32*)rowIn;
    OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32*)tmpIn;
    const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1);
    const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn);
    if (width == 1) {
        return;
    }
    memcpy(tmp, row, width * sizeof(OPJ_FLOAT32));
    opj_dwt_encode_1_real(tmp, dn, sn, even ? 0 : 1);
    opj_dwt_deinterleave_h((OPJ_INT32 * OPJ_RESTRICT)tmp,
                           (OPJ_INT32 * OPJ_RESTRICT)row,
                           dn, sn, even ? 0 : 1);
}
 
typedef struct {
    opj_dwt_t h;
    OPJ_UINT32 rw; /* Width of the resolution to process */
    OPJ_UINT32 w; /* Width of tiledp */
    OPJ_INT32 * OPJ_RESTRICT tiledp;
    OPJ_UINT32 min_j;
    OPJ_UINT32 max_j;
    opj_encode_and_deinterleave_h_one_row_fnptr_type p_function;
} opj_dwt_encode_h_job_t;
 
static void opj_dwt_encode_h_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt_encode_h_job_t* job;
    (void)tls;
 
    job = (opj_dwt_encode_h_job_t*)user_data;
    for (j = job->min_j; j < job->max_j; j++) {
        OPJ_INT32* OPJ_RESTRICT aj = job->tiledp + j * job->w;
        (*job->p_function)(aj, job->h.mem, job->rw,
                           job->h.cas == 0 ? OPJ_TRUE : OPJ_FALSE);
    }
 
    opj_aligned_free(job->h.mem);
    opj_free(job);
}
 
typedef struct {
    opj_dwt_t v;
    OPJ_UINT32 rh;
    OPJ_UINT32 w;
    OPJ_INT32 * OPJ_RESTRICT tiledp;
    OPJ_UINT32 min_j;
    OPJ_UINT32 max_j;
    opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v;
} opj_dwt_encode_v_job_t;
 
static void opj_dwt_encode_v_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt_encode_v_job_t* job;
    (void)tls;
 
    job = (opj_dwt_encode_v_job_t*)user_data;
    for (j = job->min_j; j + NB_ELTS_V8 - 1 < job->max_j; j += NB_ELTS_V8) {
        (*job->p_encode_and_deinterleave_v)(job->tiledp + j,
                                            job->v.mem,
                                            job->rh,
                                            job->v.cas == 0,
                                            job->w,
                                            NB_ELTS_V8);
    }
    if (j < job->max_j) {
        (*job->p_encode_and_deinterleave_v)(job->tiledp + j,
                                            job->v.mem,
                                            job->rh,
                                            job->v.cas == 0,
                                            job->w,
                                            job->max_j - j);
    }
 
    opj_aligned_free(job->v.mem);
    opj_free(job);
}
 
/** Fetch up to cols <= NB_ELTS_V8 for each line, and put them in tmpOut */
/* that has a NB_ELTS_V8 interleave factor. */
static void opj_dwt_fetch_cols_vertical_pass(const void *arrayIn,
        void *tmpOut,
        OPJ_UINT32 height,
        OPJ_UINT32 stride_width,
        OPJ_UINT32 cols)
{
    const OPJ_INT32* OPJ_RESTRICT array = (const OPJ_INT32 * OPJ_RESTRICT)arrayIn;
    OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpOut;
    if (cols == NB_ELTS_V8) {
        OPJ_UINT32 k;
        for (k = 0; k < height; ++k) {
            memcpy(tmp + NB_ELTS_V8 * k,
                   array + k * stride_width,
                   NB_ELTS_V8 * sizeof(OPJ_INT32));
        }
    } else {
        OPJ_UINT32 k;
        for (k = 0; k < height; ++k) {
            OPJ_UINT32 c;
            for (c = 0; c < cols; c++) {
                tmp[NB_ELTS_V8 * k + c] = array[c + k * stride_width];
            }
            for (; c < NB_ELTS_V8; c++) {
                tmp[NB_ELTS_V8 * k + c] = 0;
            }
        }
    }
}
 
/* Deinterleave result of forward transform, where cols <= NB_ELTS_V8 */
/* and src contains NB_ELTS_V8 consecutive values for up to NB_ELTS_V8 */
/* columns. */
static INLINE void opj_dwt_deinterleave_v_cols(
    const OPJ_INT32 * OPJ_RESTRICT src,
    OPJ_INT32 * OPJ_RESTRICT dst,
    OPJ_INT32 dn,
    OPJ_INT32 sn,
    OPJ_UINT32 stride_width,
    OPJ_INT32 cas,
    OPJ_UINT32 cols)
{
    OPJ_INT32 k;
    OPJ_INT32 i = sn;
    OPJ_INT32 * OPJ_RESTRICT l_dest = dst;
    const OPJ_INT32 * OPJ_RESTRICT l_src = src + cas * NB_ELTS_V8;
    OPJ_UINT32 c;
 
    for (k = 0; k < 2; k++) {
        while (i--) {
            if (cols == NB_ELTS_V8) {
                memcpy(l_dest, l_src, NB_ELTS_V8 * sizeof(OPJ_INT32));
            } else {
                c = 0;
                switch (cols) {
                case 7:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                case 6:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                case 5:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                case 4:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                case 3:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                case 2:
                    l_dest[c] = l_src[c];
                    c++; /* fallthru */
                default:
                    l_dest[c] = l_src[c];
                    break;
                }
            }
            l_dest += stride_width;
            l_src += 2 * NB_ELTS_V8;
        }
 
        l_dest = dst + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)stride_width;
        l_src = src + (1 - cas) * NB_ELTS_V8;
        i = dn;
    }
}
 
 
/* Forward 5-3 transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
static void opj_dwt_encode_and_deinterleave_v(
    void *arrayIn,
    void *tmpIn,
    OPJ_UINT32 height,
    OPJ_BOOL even,
    OPJ_UINT32 stride_width,
    OPJ_UINT32 cols)
{
    OPJ_INT32* OPJ_RESTRICT array = (OPJ_INT32 * OPJ_RESTRICT)arrayIn;
    OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpIn;
    const OPJ_UINT32 sn = (height + (even ? 1 : 0)) >> 1;
    const OPJ_UINT32 dn = height - sn;
 
    opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols);
 
#define OPJ_Sc(i) tmp[(i)*2* NB_ELTS_V8 + c]
#define OPJ_Dc(i) tmp[((1+(i)*2))* NB_ELTS_V8 + c]
 
#ifdef __SSE2__
    if (height == 1) {
        if (!even) {
            OPJ_UINT32 c;
            for (c = 0; c < NB_ELTS_V8; c++) {
                tmp[c] *= 2;
            }
        }
    } else if (even) {
        OPJ_UINT32 c;
        OPJ_UINT32 i;
        i = 0;
        if (i + 1 < sn) {
            __m128i xmm_Si_0 = *(const __m128i*)(tmp + 4 * 0);
            __m128i xmm_Si_1 = *(const __m128i*)(tmp + 4 * 1);
            for (; i + 1 < sn; i++) {
                __m128i xmm_Sip1_0 = *(const __m128i*)(tmp +
                                                       (i + 1) * 2 * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Sip1_1 = *(const __m128i*)(tmp +
                                                       (i + 1) * 2 * NB_ELTS_V8 + 4 * 1);
                __m128i xmm_Di_0 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Di_1 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 1);
                xmm_Di_0 = _mm_sub_epi32(xmm_Di_0,
                                         _mm_srai_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), 1));
                xmm_Di_1 = _mm_sub_epi32(xmm_Di_1,
                                         _mm_srai_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), 1));
                *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) =  xmm_Di_0;
                *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) =  xmm_Di_1;
                xmm_Si_0 = xmm_Sip1_0;
                xmm_Si_1 = xmm_Sip1_1;
            }
        }
        if (((height) % 2) == 0) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Dc(i) -= OPJ_Sc(i);
            }
        }
        for (c = 0; c < NB_ELTS_V8; c++) {
            OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2;
        }
        i = 1;
        if (i < dn) {
            __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 +
                                                   (i - 1) * 2) * NB_ELTS_V8 + 4 * 0);
            __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 +
                                                   (i - 1) * 2) * NB_ELTS_V8 + 4 * 1);
            const __m128i xmm_two = _mm_set1_epi32(2);
            for (; i < dn; i++) {
                __m128i xmm_Di_0 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Di_1 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 1);
                __m128i xmm_Si_0 = *(const __m128i*)(tmp +
                                                     (i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Si_1 = *(const __m128i*)(tmp +
                                                     (i * 2) * NB_ELTS_V8 + 4 * 1);
                xmm_Si_0 = _mm_add_epi32(xmm_Si_0,
                                         _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_0, xmm_Di_0), xmm_two), 2));
                xmm_Si_1 = _mm_add_epi32(xmm_Si_1,
                                         _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_1, xmm_Di_1), xmm_two), 2));
                *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0;
                *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1;
                xmm_Dim1_0 = xmm_Di_0;
                xmm_Dim1_1 = xmm_Di_1;
            }
        }
        if (((height) % 2) == 1) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2;
            }
        }
    } else {
        OPJ_UINT32 c;
        OPJ_UINT32 i;
        for (c = 0; c < NB_ELTS_V8; c++) {
            OPJ_Sc(0) -= OPJ_Dc(0);
        }
        i = 1;
        if (i < sn) {
            __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 +
                                                   (i - 1) * 2) * NB_ELTS_V8 + 4 * 0);
            __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 +
                                                   (i - 1) * 2) * NB_ELTS_V8 + 4 * 1);
            for (; i < sn; i++) {
                __m128i xmm_Di_0 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Di_1 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 1);
                __m128i xmm_Si_0 = *(const __m128i*)(tmp +
                                                     (i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Si_1 = *(const __m128i*)(tmp +
                                                     (i * 2) * NB_ELTS_V8 + 4 * 1);
                xmm_Si_0 = _mm_sub_epi32(xmm_Si_0,
                                         _mm_srai_epi32(_mm_add_epi32(xmm_Di_0, xmm_Dim1_0), 1));
                xmm_Si_1 = _mm_sub_epi32(xmm_Si_1,
                                         _mm_srai_epi32(_mm_add_epi32(xmm_Di_1, xmm_Dim1_1), 1));
                *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0;
                *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1;
                xmm_Dim1_0 = xmm_Di_0;
                xmm_Dim1_1 = xmm_Di_1;
            }
        }
        if (((height) % 2) == 1) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Sc(i) -= OPJ_Dc(i - 1);
            }
        }
        i = 0;
        if (i + 1 < dn) {
            __m128i xmm_Si_0 = *((const __m128i*)(tmp + 4 * 0));
            __m128i xmm_Si_1 = *((const __m128i*)(tmp + 4 * 1));
            const __m128i xmm_two = _mm_set1_epi32(2);
            for (; i + 1 < dn; i++) {
                __m128i xmm_Sip1_0 = *(const __m128i*)(tmp +
                                                       (i + 1) * 2 * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Sip1_1 = *(const __m128i*)(tmp +
                                                       (i + 1) * 2 * NB_ELTS_V8 + 4 * 1);
                __m128i xmm_Di_0 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 0);
                __m128i xmm_Di_1 = *(const __m128i*)(tmp +
                                                     (1 + i * 2) * NB_ELTS_V8 + 4 * 1);
                xmm_Di_0 = _mm_add_epi32(xmm_Di_0,
                                         _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), xmm_two), 2));
                xmm_Di_1 = _mm_add_epi32(xmm_Di_1,
                                         _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), xmm_two), 2));
                *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0;
                *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1;
                xmm_Si_0 = xmm_Sip1_0;
                xmm_Si_1 = xmm_Sip1_1;
            }
        }
        if (((height) % 2) == 0) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2;
            }
        }
    }
#else
    if (even) {
        OPJ_UINT32 c;
        if (height > 1) {
            OPJ_UINT32 i;
            for (i = 0; i + 1 < sn; i++) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Dc(i) -= (OPJ_Sc(i) + OPJ_Sc(i + 1)) >> 1;
                }
            }
            if (((height) % 2) == 0) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Dc(i) -= OPJ_Sc(i);
                }
            }
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2;
            }
            for (i = 1; i < dn; i++) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i) + 2) >> 2;
                }
            }
            if (((height) % 2) == 1) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2;
                }
            }
        }
    } else {
        OPJ_UINT32 c;
        if (height == 1) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Sc(0) *= 2;
            }
        } else {
            OPJ_UINT32 i;
            for (c = 0; c < NB_ELTS_V8; c++) {
                OPJ_Sc(0) -= OPJ_Dc(0);
            }
            for (i = 1; i < sn; i++) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Sc(i) -= (OPJ_Dc(i) + OPJ_Dc(i - 1)) >> 1;
                }
            }
            if (((height) % 2) == 1) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Sc(i) -= OPJ_Dc(i - 1);
                }
            }
            for (i = 0; i + 1 < dn; i++) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i + 1) + 2) >> 2;
                }
            }
            if (((height) % 2) == 0) {
                for (c = 0; c < NB_ELTS_V8; c++) {
                    OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2;
                }
            }
        }
    }
#endif
 
    if (cols == NB_ELTS_V8) {
        opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn,
                                    stride_width, even ? 0 : 1, NB_ELTS_V8);
    } else {
        opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn,
                                    stride_width, even ? 0 : 1, cols);
    }
}
 
static void opj_v8dwt_encode_step1(OPJ_FLOAT32* fw,
                                   OPJ_UINT32 end,
                                   const OPJ_FLOAT32 cst)
{
    OPJ_UINT32 i;
#ifdef __SSE__
    __m128* vw = (__m128*) fw;
    const __m128 vcst = _mm_set1_ps(cst);
    for (i = 0; i < end; ++i) {
        vw[0] = _mm_mul_ps(vw[0], vcst);
        vw[1] = _mm_mul_ps(vw[1], vcst);
        vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
    }
#else
    OPJ_UINT32 c;
    for (i = 0; i < end; ++i) {
        for (c = 0; c < NB_ELTS_V8; c++) {
            fw[i * 2 * NB_ELTS_V8 + c] *= cst;
        }
    }
#endif
}
 
static void opj_v8dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw,
                                   OPJ_UINT32 end,
                                   OPJ_UINT32 m,
                                   OPJ_FLOAT32 cst)
{
    OPJ_UINT32 i;
    OPJ_UINT32 imax = opj_uint_min(end, m);
#ifdef __SSE__
    __m128* vw = (__m128*) fw;
    __m128 vcst = _mm_set1_ps(cst);
    if (imax > 0) {
        __m128* vl = (__m128*) fl;
        vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), vcst));
        vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), vcst));
        vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
        i = 1;
 
        for (; i < imax; ++i) {
            vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), vcst));
            vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), vcst));
            vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128));
        }
    }
    if (m < end) {
        assert(m + 1 == end);
        vcst = _mm_add_ps(vcst, vcst);
        vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(vw[-4], vcst));
        vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(vw[-3], vcst));
    }
#else
    OPJ_INT32 c;
    if (imax > 0) {
        for (c = 0; c < NB_ELTS_V8; c++) {
            fw[-1 * NB_ELTS_V8 + c] += (fl[0 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) *
                                       cst;
        }
        fw += 2 * NB_ELTS_V8;
        i = 1;
        for (; i < imax; ++i) {
            for (c = 0; c < NB_ELTS_V8; c++) {
                fw[-1 * NB_ELTS_V8 + c] += (fw[-2 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) *
                                           cst;
            }
            fw += 2 * NB_ELTS_V8;
        }
    }
    if (m < end) {
        assert(m + 1 == end);
        for (c = 0; c < NB_ELTS_V8; c++) {
            fw[-1 * NB_ELTS_V8 + c] += (2 * fw[-2 * NB_ELTS_V8 + c]) * cst;
        }
    }
#endif
}
 
/* Forward 9-7 transform, for the vertical pass, processing cols columns */
/* where cols <= NB_ELTS_V8 */
static void opj_dwt_encode_and_deinterleave_v_real(
    void *arrayIn,
    void *tmpIn,
    OPJ_UINT32 height,
    OPJ_BOOL even,
    OPJ_UINT32 stride_width,
    OPJ_UINT32 cols)
{
    OPJ_FLOAT32* OPJ_RESTRICT array = (OPJ_FLOAT32 * OPJ_RESTRICT)arrayIn;
    OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32 * OPJ_RESTRICT)tmpIn;
    const OPJ_INT32 sn = (OPJ_INT32)((height + (even ? 1 : 0)) >> 1);
    const OPJ_INT32 dn = (OPJ_INT32)(height - (OPJ_UINT32)sn);
    OPJ_INT32 a, b;
 
    if (height == 1) {
        return;
    }
 
    opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols);
 
    if (even) {
        a = 0;
        b = 1;
    } else {
        a = 1;
        b = 0;
    }
    opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8,
                           tmp + (b + 1) * NB_ELTS_V8,
                           (OPJ_UINT32)dn,
                           (OPJ_UINT32)opj_int_min(dn, sn - b),
                           opj_dwt_alpha);
    opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8,
                           tmp + (a + 1) * NB_ELTS_V8,
                           (OPJ_UINT32)sn,
                           (OPJ_UINT32)opj_int_min(sn, dn - a),
                           opj_dwt_beta);
    opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8,
                           tmp + (b + 1) * NB_ELTS_V8,
                           (OPJ_UINT32)dn,
                           (OPJ_UINT32)opj_int_min(dn, sn - b),
                           opj_dwt_gamma);
    opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8,
                           tmp + (a + 1) * NB_ELTS_V8,
                           (OPJ_UINT32)sn,
                           (OPJ_UINT32)opj_int_min(sn, dn - a),
                           opj_dwt_delta);
    opj_v8dwt_encode_step1(tmp + b * NB_ELTS_V8, (OPJ_UINT32)dn,
                           opj_K);
    opj_v8dwt_encode_step1(tmp + a * NB_ELTS_V8, (OPJ_UINT32)sn,
                           opj_invK);
 
 
    if (cols == NB_ELTS_V8) {
        opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp,
                                    (OPJ_INT32*)array,
                                    (OPJ_INT32)dn, (OPJ_INT32)sn,
                                    stride_width, even ? 0 : 1, NB_ELTS_V8);
    } else {
        opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp,
                                    (OPJ_INT32*)array,
                                    (OPJ_INT32)dn, (OPJ_INT32)sn,
                                    stride_width, even ? 0 : 1, cols);
    }
}
 
 
/* <summary>                            */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp,
        opj_tcd_tilecomp_t * tilec,
        opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v,
        opj_encode_and_deinterleave_h_one_row_fnptr_type
        p_encode_and_deinterleave_h_one_row)
{
    OPJ_INT32 i;
    OPJ_INT32 *bj = 00;
    OPJ_UINT32 w;
    OPJ_INT32 l;
 
    OPJ_SIZE_T l_data_size;
 
    opj_tcd_resolution_t * l_cur_res = 0;
    opj_tcd_resolution_t * l_last_res = 0;
    const int num_threads = opj_thread_pool_get_thread_count(tp);
    OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
 
    w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
    l = (OPJ_INT32)tilec->numresolutions - 1;
 
    l_cur_res = tilec->resolutions + l;
    l_last_res = l_cur_res - 1;
 
    l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
    /* overflow check */
    if (l_data_size > (SIZE_MAX / (NB_ELTS_V8 * sizeof(OPJ_INT32)))) {
        /* FIXME event manager error callback */
        return OPJ_FALSE;
    }
    l_data_size *= NB_ELTS_V8 * sizeof(OPJ_INT32);
    bj = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
    /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
    /* in that case, so do not error out */
    if (l_data_size != 0 && ! bj) {
        return OPJ_FALSE;
    }
    i = l;
 
    while (i--) {
        OPJ_UINT32 j;
        OPJ_UINT32 rw;           /* width of the resolution level computed   */
        OPJ_UINT32 rh;           /* height of the resolution level computed  */
        OPJ_UINT32
        rw1;      /* width of the resolution level once lower than computed one                                       */
        OPJ_UINT32
        rh1;      /* height of the resolution level once lower than computed one                                      */
        OPJ_INT32 cas_col;  /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
        OPJ_INT32 cas_row;  /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
        OPJ_INT32 dn, sn;
 
        rw  = (OPJ_UINT32)(l_cur_res->x1 - l_cur_res->x0);
        rh  = (OPJ_UINT32)(l_cur_res->y1 - l_cur_res->y0);
        rw1 = (OPJ_UINT32)(l_last_res->x1 - l_last_res->x0);
        rh1 = (OPJ_UINT32)(l_last_res->y1 - l_last_res->y0);
 
        cas_row = l_cur_res->x0 & 1;
        cas_col = l_cur_res->y0 & 1;
 
        sn = (OPJ_INT32)rh1;
        dn = (OPJ_INT32)(rh - rh1);
 
        /* Perform vertical pass */
        if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) {
            for (j = 0; j + NB_ELTS_V8 - 1 < rw; j += NB_ELTS_V8) {
                p_encode_and_deinterleave_v(tiledp + j,
                                            bj,
                                            rh,
                                            cas_col == 0,
                                            w,
                                            NB_ELTS_V8);
            }
            if (j < rw) {
                p_encode_and_deinterleave_v(tiledp + j,
                                            bj,
                                            rh,
                                            cas_col == 0,
                                            w,
                                            rw - j);
            }
        }  else {
            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
            OPJ_UINT32 step_j;
 
            if (rw < num_jobs) {
                num_jobs = rw;
            }
            step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8;
 
            for (j = 0; j < num_jobs; j++) {
                opj_dwt_encode_v_job_t* job;
 
                job = (opj_dwt_encode_v_job_t*) opj_malloc(sizeof(opj_dwt_encode_v_job_t));
                if (!job) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(bj);
                    return OPJ_FALSE;
                }
                job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
                if (!job->v.mem) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(bj);
                    return OPJ_FALSE;
                }
                job->v.dn = dn;
                job->v.sn = sn;
                job->v.cas = cas_col;
                job->rh = rh;
                job->w = w;
                job->tiledp = tiledp;
                job->min_j = j * step_j;
                job->max_j = (j + 1 == num_jobs) ? rw : (j + 1) * step_j;
                job->p_encode_and_deinterleave_v = p_encode_and_deinterleave_v;
                opj_thread_pool_submit_job(tp, opj_dwt_encode_v_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
        }
 
        sn = (OPJ_INT32)rw1;
        dn = (OPJ_INT32)(rw - rw1);
 
        /* Perform horizontal pass */
        if (num_threads <= 1 || rh <= 1) {
            for (j = 0; j < rh; j++) {
                OPJ_INT32* OPJ_RESTRICT aj = tiledp + j * w;
                (*p_encode_and_deinterleave_h_one_row)(aj, bj, rw,
                                                       cas_row == 0 ? OPJ_TRUE : OPJ_FALSE);
            }
        }  else {
            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
            OPJ_UINT32 step_j;
 
            if (rh < num_jobs) {
                num_jobs = rh;
            }
            step_j = (rh / num_jobs);
 
            for (j = 0; j < num_jobs; j++) {
                opj_dwt_encode_h_job_t* job;
 
                job = (opj_dwt_encode_h_job_t*) opj_malloc(sizeof(opj_dwt_encode_h_job_t));
                if (!job) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(bj);
                    return OPJ_FALSE;
                }
                job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size);
                if (!job->h.mem) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(bj);
                    return OPJ_FALSE;
                }
                job->h.dn = dn;
                job->h.sn = sn;
                job->h.cas = cas_row;
                job->rw = rw;
                job->w = w;
                job->tiledp = tiledp;
                job->min_j = j * step_j;
                job->max_j = (j + 1U) * step_j; /* this can overflow */
                if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
                    job->max_j = rh;
                }
                job->p_function = p_encode_and_deinterleave_h_one_row;
                opj_thread_pool_submit_job(tp, opj_dwt_encode_h_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
        }
 
        l_cur_res = l_last_res;
 
        --l_last_res;
    }
 
    opj_aligned_free(bj);
    return OPJ_TRUE;
}
 
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_encode(opj_tcd_t *p_tcd,
                        opj_tcd_tilecomp_t * tilec)
{
    return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec,
                                    opj_dwt_encode_and_deinterleave_v,
                                    opj_dwt_encode_and_deinterleave_h_one_row);
}
 
/* <summary>                            */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
                        OPJ_UINT32 numres)
{
    if (p_tcd->whole_tile_decoding) {
        return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
    } else {
        return opj_dwt_decode_partial_tile(tilec, numres);
    }
}
 
/* <summary>                */
/* Get norm of 5-3 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
{
    /* FIXME ! This is just a band-aid to avoid a buffer overflow */
    /* but the array should really be extended up to 33 resolution levels */
    /* See https://github.com/uclouvain/openjpeg/issues/493 */
    if (orient == 0 && level >= 10) {
        level = 9;
    } else if (orient > 0 && level >= 9) {
        level = 8;
    }
    return opj_dwt_norms[orient][level];
}
 
/* <summary>                             */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary>                            */
OPJ_BOOL opj_dwt_encode_real(opj_tcd_t *p_tcd,
                             opj_tcd_tilecomp_t * tilec)
{
    return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec,
                                    opj_dwt_encode_and_deinterleave_v_real,
                                    opj_dwt_encode_and_deinterleave_h_one_row_real);
}
 
/* <summary>                */
/* Get norm of 9-7 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
{
    /* FIXME ! This is just a band-aid to avoid a buffer overflow */
    /* but the array should really be extended up to 33 resolution levels */
    /* See https://github.com/uclouvain/openjpeg/issues/493 */
    if (orient == 0 && level >= 10) {
        level = 9;
    } else if (orient > 0 && level >= 9) {
        level = 8;
    }
    return opj_dwt_norms_real[orient][level];
}
 
void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
{
    OPJ_UINT32 numbands, bandno;
    numbands = 3 * tccp->numresolutions - 2;
    for (bandno = 0; bandno < numbands; bandno++) {
        OPJ_FLOAT64 stepsize;
        OPJ_UINT32 resno, level, orient, gain;
 
        resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
        orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
        level = tccp->numresolutions - 1 - resno;
        gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
                                          (orient == 2)) ? 1 : 2));
        if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
            stepsize = 1.0;
        } else {
            OPJ_FLOAT64 norm = opj_dwt_getnorm_real(level, orient);
            stepsize = (1 << (gain)) / norm;
        }
        opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
                                (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
    }
}
 
/* <summary>                             */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary>                            */
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
        OPJ_UINT32 i)
{
    OPJ_UINT32 mr   = 0;
    OPJ_UINT32 w;
    while (--i) {
        ++r;
        if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
            mr = w ;
        }
        if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
            mr = w ;
        }
    }
    return mr ;
}
 
typedef struct {
    opj_dwt_t h;
    OPJ_UINT32 rw;
    OPJ_UINT32 w;
    OPJ_INT32 * OPJ_RESTRICT tiledp;
    OPJ_UINT32 min_j;
    OPJ_UINT32 max_j;
} opj_dwt_decode_h_job_t;
 
static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt_decode_h_job_t* job;
    (void)tls;
 
    job = (opj_dwt_decode_h_job_t*)user_data;
    for (j = job->min_j; j < job->max_j; j++) {
        opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
    }
 
    opj_aligned_free(job->h.mem);
    opj_free(job);
}
 
typedef struct {
    opj_dwt_t v;
    OPJ_UINT32 rh;
    OPJ_UINT32 w;
    OPJ_INT32 * OPJ_RESTRICT tiledp;
    OPJ_UINT32 min_j;
    OPJ_UINT32 max_j;
} opj_dwt_decode_v_job_t;
 
static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt_decode_v_job_t* job;
    (void)tls;
 
    job = (opj_dwt_decode_v_job_t*)user_data;
    for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
            j += PARALLEL_COLS_53) {
        opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
                     PARALLEL_COLS_53);
    }
    if (j < job->max_j)
        opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
                     (OPJ_INT32)(job->max_j - j));
 
    opj_aligned_free(job->v.mem);
    opj_free(job);
}
 
 
/* <summary>                            */
/* Inverse wavelet transform in 2-D.    */
/* </summary>                           */
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
                                    opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
{
    opj_dwt_t h;
    opj_dwt_t v;
 
    opj_tcd_resolution_t* tr = tilec->resolutions;
 
    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
                                 tr->x0);  /* width of the resolution level computed */
    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
                                 tr->y0);  /* height of the resolution level computed */
 
    OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
                                                               1].x1 -
                                tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
    OPJ_SIZE_T h_mem_size;
    int num_threads;
 
    if (numres == 1U) {
        return OPJ_TRUE;
    }
    num_threads = opj_thread_pool_get_thread_count(tp);
    h_mem_size = opj_dwt_max_resolution(tr, numres);
    /* overflow check */
    if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
        /* FIXME event manager error callback */
        return OPJ_FALSE;
    }
    /* We need PARALLEL_COLS_53 times the height of the array, */
    /* since for the vertical pass */
    /* we process PARALLEL_COLS_53 columns at a time */
    h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32);
    h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
    if (! h.mem) {
        /* FIXME event manager error callback */
        return OPJ_FALSE;
    }
 
    v.mem = h.mem;
 
    while (--numres) {
        OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
        OPJ_UINT32 j;
 
        ++tr;
        h.sn = (OPJ_INT32)rw;
        v.sn = (OPJ_INT32)rh;
 
        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
 
        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
        h.cas = tr->x0 % 2;
 
        if (num_threads <= 1 || rh <= 1) {
            for (j = 0; j < rh; ++j) {
                opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
            }
        } else {
            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
            OPJ_UINT32 step_j;
 
            if (rh < num_jobs) {
                num_jobs = rh;
            }
            step_j = (rh / num_jobs);
 
            for (j = 0; j < num_jobs; j++) {
                opj_dwt_decode_h_job_t* job;
 
                job = (opj_dwt_decode_h_job_t*) opj_malloc(sizeof(opj_dwt_decode_h_job_t));
                if (!job) {
                    /* It would be nice to fallback to single thread case, but */
                    /* unfortunately some jobs may be launched and have modified */
                    /* tiledp, so it is not practical to recover from that error */
                    /* FIXME event manager error callback */
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(h.mem);
                    return OPJ_FALSE;
                }
                job->h = h;
                job->rw = rw;
                job->w = w;
                job->tiledp = tiledp;
                job->min_j = j * step_j;
                job->max_j = (j + 1U) * step_j; /* this can overflow */
                if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
                    job->max_j = rh;
                }
                job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
                if (!job->h.mem) {
                    /* FIXME event manager error callback */
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(h.mem);
                    return OPJ_FALSE;
                }
                opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
        }
 
        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
        v.cas = tr->y0 % 2;
 
        if (num_threads <= 1 || rw <= 1) {
            for (j = 0; j + PARALLEL_COLS_53 <= rw;
                    j += PARALLEL_COLS_53) {
                opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
            }
            if (j < rw) {
                opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
            }
        } else {
            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
            OPJ_UINT32 step_j;
 
            if (rw < num_jobs) {
                num_jobs = rw;
            }
            step_j = (rw / num_jobs);
 
            for (j = 0; j < num_jobs; j++) {
                opj_dwt_decode_v_job_t* job;
 
                job = (opj_dwt_decode_v_job_t*) opj_malloc(sizeof(opj_dwt_decode_v_job_t));
                if (!job) {
                    /* It would be nice to fallback to single thread case, but */
                    /* unfortunately some jobs may be launched and have modified */
                    /* tiledp, so it is not practical to recover from that error */
                    /* FIXME event manager error callback */
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(v.mem);
                    return OPJ_FALSE;
                }
                job->v = v;
                job->rh = rh;
                job->w = w;
                job->tiledp = tiledp;
                job->min_j = j * step_j;
                job->max_j = (j + 1U) * step_j; /* this can overflow */
                if (j == (num_jobs - 1U)) {  /* this will take care of the overflow */
                    job->max_j = rw;
                }
                job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
                if (!job->v.mem) {
                    /* FIXME event manager error callback */
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(v.mem);
                    return OPJ_FALSE;
                }
                opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
        }
    }
    opj_aligned_free(h.mem);
    return OPJ_TRUE;
}
 
static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
        OPJ_INT32 cas,
        opj_sparse_array_int32_t* sa,
        OPJ_UINT32 sa_line,
        OPJ_UINT32 sn,
        OPJ_UINT32 win_l_x0,
        OPJ_UINT32 win_l_x1,
        OPJ_UINT32 win_h_x0,
        OPJ_UINT32 win_h_x1)
{
    OPJ_BOOL ret;
    ret = opj_sparse_array_int32_read(sa,
                                      win_l_x0, sa_line,
                                      win_l_x1, sa_line + 1,
                                      dest + cas + 2 * win_l_x0,
                                      2, 0, OPJ_TRUE);
    assert(ret);
    ret = opj_sparse_array_int32_read(sa,
                                      sn + win_h_x0, sa_line,
                                      sn + win_h_x1, sa_line + 1,
                                      dest + 1 - cas + 2 * win_h_x0,
                                      2, 0, OPJ_TRUE);
    assert(ret);
    OPJ_UNUSED(ret);
}
 
 
static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
        OPJ_INT32 cas,
        opj_sparse_array_int32_t* sa,
        OPJ_UINT32 sa_col,
        OPJ_UINT32 nb_cols,
        OPJ_UINT32 sn,
        OPJ_UINT32 win_l_y0,
        OPJ_UINT32 win_l_y1,
        OPJ_UINT32 win_h_y0,
        OPJ_UINT32 win_h_y1)
{
    OPJ_BOOL ret;
    ret  = opj_sparse_array_int32_read(sa,
                                       sa_col, win_l_y0,
                                       sa_col + nb_cols, win_l_y1,
                                       dest + cas * 4 + 2 * 4 * win_l_y0,
                                       1, 2 * 4, OPJ_TRUE);
    assert(ret);
    ret = opj_sparse_array_int32_read(sa,
                                      sa_col, sn + win_h_y0,
                                      sa_col + nb_cols, sn + win_h_y1,
                                      dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
                                      1, 2 * 4, OPJ_TRUE);
    assert(ret);
    OPJ_UNUSED(ret);
}
 
static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
                                     OPJ_INT32 cas,
                                     OPJ_INT32 win_l_x0,
                                     OPJ_INT32 win_l_x1,
                                     OPJ_INT32 win_h_x0,
                                     OPJ_INT32 win_h_x1)
{
    OPJ_INT32 i;
 
    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
 
            /* Naive version is :
            for (i = win_l_x0; i < i_max; i++) {
                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
            }
            for (i = win_h_x0; i < win_h_x1; i++) {
                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
            }
            but the compiler doesn't manage to unroll it to avoid bound
            checking in OPJ_S_ and OPJ_D_ macros
            */
 
            i = win_l_x0;
            if (i < win_l_x1) {
                OPJ_INT32 i_max;
 
                /* Left-most case */
                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
                i ++;
 
                i_max = win_l_x1;
                if (i_max > dn) {
                    i_max = dn;
                }
                for (; i < i_max; i++) {
                    /* No bound checking */
                    OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
                }
                for (; i < win_l_x1; i++) {
                    /* Right-most case */
                    OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
                }
            }
 
            i = win_h_x0;
            if (i < win_h_x1) {
                OPJ_INT32 i_max = win_h_x1;
                if (i_max >= sn) {
                    i_max = sn - 1;
                }
                for (; i < i_max; i++) {
                    /* No bound checking */
                    OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
                }
                for (; i < win_h_x1; i++) {
                    /* Right-most case */
                    OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
                }
            }
        }
    } else {
        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
            OPJ_S(0) /= 2;
        } else {
            for (i = win_l_x0; i < win_l_x1; i++) {
                OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
            }
            for (i = win_h_x0; i < win_h_x1; i++) {
                OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
            }
        }
    }
}
 
#define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
#define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
#define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
#define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
#define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
#define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
 
static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
        OPJ_UINT32 nb_cols,
        OPJ_INT32 dn, OPJ_INT32 sn,
        OPJ_INT32 cas,
        OPJ_INT32 win_l_x0,
        OPJ_INT32 win_l_x1,
        OPJ_INT32 win_h_x0,
        OPJ_INT32 win_h_x1)
{
    OPJ_INT32 i;
    OPJ_UINT32 off;
 
    (void)nb_cols;
 
    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
 
            /* Naive version is :
            for (i = win_l_x0; i < i_max; i++) {
                OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
            }
            for (i = win_h_x0; i < win_h_x1; i++) {
                OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
            }
            but the compiler doesn't manage to unroll it to avoid bound
            checking in OPJ_S_ and OPJ_D_ macros
            */
 
            i = win_l_x0;
            if (i < win_l_x1) {
                OPJ_INT32 i_max;
 
                /* Left-most case */
                for (off = 0; off < 4; off++) {
                    OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
                }
                i ++;
 
                i_max = win_l_x1;
                if (i_max > dn) {
                    i_max = dn;
                }
 
#ifdef __SSE2__
                if (i + 1 < i_max) {
                    const __m128i two = _mm_set1_epi32(2);
                    __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
                    for (; i + 1 < i_max; i += 2) {
                        /* No bound checking */
                        __m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
                        __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
                        __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
                        __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
                        S = _mm_sub_epi32(S,
                                          _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
                        S1 = _mm_sub_epi32(S1,
                                           _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
                        _mm_store_si128((__m128i*)(a + i * 8), S);
                        _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
                        Dm1 = D1;
                    }
                }
#endif
 
                for (; i < i_max; i++) {
                    /* No bound checking */
                    for (off = 0; off < 4; off++) {
                        OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
                    }
                }
                for (; i < win_l_x1; i++) {
                    /* Right-most case */
                    for (off = 0; off < 4; off++) {
                        OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
                    }
                }
            }
 
            i = win_h_x0;
            if (i < win_h_x1) {
                OPJ_INT32 i_max = win_h_x1;
                if (i_max >= sn) {
                    i_max = sn - 1;
                }
 
#ifdef __SSE2__
                if (i + 1 < i_max) {
                    __m128i S =  _mm_load_si128((__m128i * const)(a + i * 8));
                    for (; i + 1 < i_max; i += 2) {
                        /* No bound checking */
                        __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
                        __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
                        __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
                        __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
                        D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
                        D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
                        _mm_store_si128((__m128i*)(a + 4 + i * 8), D);
                        _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
                        S = S2;
                    }
                }
#endif
 
                for (; i < i_max; i++) {
                    /* No bound checking */
                    for (off = 0; off < 4; off++) {
                        OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
                    }
                }
                for (; i < win_h_x1; i++) {
                    /* Right-most case */
                    for (off = 0; off < 4; off++) {
                        OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
                    }
                }
            }
        }
    } else {
        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
            for (off = 0; off < 4; off++) {
                OPJ_S_off(0, off) /= 2;
            }
        } else {
            for (i = win_l_x0; i < win_l_x1; i++) {
                for (off = 0; off < 4; off++) {
                    OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2;
                }
            }
            for (i = win_h_x0; i < win_h_x1; i++) {
                for (off = 0; off < 4; off++) {
                    OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1;
                }
            }
        }
    }
}
 
static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
        OPJ_UINT32 resno,
        OPJ_UINT32 bandno,
        OPJ_UINT32 tcx0,
        OPJ_UINT32 tcy0,
        OPJ_UINT32 tcx1,
        OPJ_UINT32 tcy1,
        OPJ_UINT32* tbx0,
        OPJ_UINT32* tby0,
        OPJ_UINT32* tbx1,
        OPJ_UINT32* tby1)
{
    /* Compute number of decomposition for this band. See table F-1 */
    OPJ_UINT32 nb = (resno == 0) ?
                    tilec->numresolutions - 1 :
                    tilec->numresolutions - resno;
    /* Map above tile-based coordinates to sub-band-based coordinates per */
    /* equation B-15 of the standard */
    OPJ_UINT32 x0b = bandno & 1;
    OPJ_UINT32 y0b = bandno >> 1;
    if (tbx0) {
        *tbx0 = (nb == 0) ? tcx0 :
                (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
                opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
    }
    if (tby0) {
        *tby0 = (nb == 0) ? tcy0 :
                (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
                opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
    }
    if (tbx1) {
        *tbx1 = (nb == 0) ? tcx1 :
                (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
                opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
    }
    if (tby1) {
        *tby1 = (nb == 0) ? tcy1 :
                (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
                opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
    }
}
 
static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
                                 OPJ_UINT32 max_size,
                                 OPJ_UINT32* start,
                                 OPJ_UINT32* end)
{
    *start = opj_uint_subs(*start, filter_width);
    *end = opj_uint_adds(*end, filter_width);
    *end = opj_uint_min(*end, max_size);
}
 
 
static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
    opj_tcd_tilecomp_t* tilec,
    OPJ_UINT32 numres)
{
    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
    OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
    OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
    OPJ_UINT32 resno, bandno, precno, cblkno;
    opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
                                       w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
    if (sa == NULL) {
        return NULL;
    }
 
    for (resno = 0; resno < numres; ++resno) {
        opj_tcd_resolution_t* res = &tilec->resolutions[resno];
 
        for (bandno = 0; bandno < res->numbands; ++bandno) {
            opj_tcd_band_t* band = &res->bands[bandno];
 
            for (precno = 0; precno < res->pw * res->ph; ++precno) {
                opj_tcd_precinct_t* precinct = &band->precincts[precno];
                for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
                    opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
                    if (cblk->decoded_data != NULL) {
                        OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
                        OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
                        OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
                        OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
 
                        if (band->bandno & 1) {
                            opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
                            x += (OPJ_UINT32)(pres->x1 - pres->x0);
                        }
                        if (band->bandno & 2) {
                            opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
                            y += (OPJ_UINT32)(pres->y1 - pres->y0);
                        }
 
                        if (!opj_sparse_array_int32_write(sa, x, y,
                                                          x + cblk_w, y + cblk_h,
                                                          cblk->decoded_data,
                                                          1, cblk_w, OPJ_TRUE)) {
                            opj_sparse_array_int32_free(sa);
                            return NULL;
                        }
                    }
                }
            }
        }
    }
 
    return sa;
}
 
 
static OPJ_BOOL opj_dwt_decode_partial_tile(
    opj_tcd_tilecomp_t* tilec,
    OPJ_UINT32 numres)
{
    opj_sparse_array_int32_t* sa;
    opj_dwt_t h;
    opj_dwt_t v;
    OPJ_UINT32 resno;
    /* This value matches the maximum left/right extension given in tables */
    /* F.2 and F.3 of the standard. */
    const OPJ_UINT32 filter_width = 2U;
 
    opj_tcd_resolution_t* tr = tilec->resolutions;
    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
 
    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
                                 tr->x0);  /* width of the resolution level computed */
    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
                                 tr->y0);  /* height of the resolution level computed */
 
    OPJ_SIZE_T h_mem_size;
 
    /* Compute the intersection of the area of interest, expressed in tile coordinates */
    /* with the tile coordinates */
    OPJ_UINT32 win_tcx0 = tilec->win_x0;
    OPJ_UINT32 win_tcy0 = tilec->win_y0;
    OPJ_UINT32 win_tcx1 = tilec->win_x1;
    OPJ_UINT32 win_tcy1 = tilec->win_y1;
 
    if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
        return OPJ_TRUE;
    }
 
    sa = opj_dwt_init_sparse_array(tilec, numres);
    if (sa == NULL) {
        return OPJ_FALSE;
    }
 
    if (numres == 1U) {
        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
                       tilec->data_win,
                       1, tr_max->win_x1 - tr_max->win_x0,
                       OPJ_TRUE);
        assert(ret);
        OPJ_UNUSED(ret);
        opj_sparse_array_int32_free(sa);
        return OPJ_TRUE;
    }
    h_mem_size = opj_dwt_max_resolution(tr, numres);
    /* overflow check */
    /* in vertical pass, we process 4 columns at a time */
    if (h_mem_size > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) {
        /* FIXME event manager error callback */
        opj_sparse_array_int32_free(sa);
        return OPJ_FALSE;
    }
 
    h_mem_size *= 4 * sizeof(OPJ_INT32);
    h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
    if (! h.mem) {
        /* FIXME event manager error callback */
        opj_sparse_array_int32_free(sa);
        return OPJ_FALSE;
    }
 
    v.mem = h.mem;
 
    for (resno = 1; resno < numres; resno ++) {
        OPJ_UINT32 i, j;
        /* Window of interest subband-based coordinates */
        OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
        OPJ_UINT32 win_hl_x0, win_hl_x1;
        OPJ_UINT32 win_lh_y0, win_lh_y1;
        /* Window of interest tile-resolution-based coordinates */
        OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
        /* Tile-resolution subband-based coordinates */
        OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
 
        ++tr;
 
        h.sn = (OPJ_INT32)rw;
        v.sn = (OPJ_INT32)rh;
 
        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
 
        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
        h.cas = tr->x0 % 2;
 
        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
        v.cas = tr->y0 % 2;
 
        /* Get the subband coordinates for the window of interest */
        /* LL band */
        opj_dwt_get_band_coordinates(tilec, resno, 0,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     &win_ll_x0, &win_ll_y0,
                                     &win_ll_x1, &win_ll_y1);
 
        /* HL band */
        opj_dwt_get_band_coordinates(tilec, resno, 1,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     &win_hl_x0, NULL, &win_hl_x1, NULL);
 
        /* LH band */
        opj_dwt_get_band_coordinates(tilec, resno, 2,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     NULL, &win_lh_y0, NULL, &win_lh_y1);
 
        /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
        tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
        tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
        tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
        tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
 
        /* Subtract the origin of the bands for this tile, to the subwindow */
        /* of interest band coordinates, so as to get them relative to the */
        /* tile */
        win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
        win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
        win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
        win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
        win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
        win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
        win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
        win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
 
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
 
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
 
        /* Compute the tile-resolution-based coordinates for the window of interest */
        if (h.cas == 0) {
            win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
        } else {
            win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
        }
 
        if (v.cas == 0) {
            win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
        } else {
            win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
        }
 
        for (j = 0; j < rh; ++j) {
            if ((j >= win_ll_y0 && j < win_ll_y1) ||
                    (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
 
                /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */
                /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */
                /* on opj_decompress -i  ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */
                /* This is less extreme than memsetting the whole buffer to 0 */
                /* although we could potentially do better with better handling of edge conditions */
                if (win_tr_x1 >= 1 && win_tr_x1 < rw) {
                    h.mem[win_tr_x1 - 1] = 0;
                }
                if (win_tr_x1 < rw) {
                    h.mem[win_tr_x1] = 0;
                }
 
                opj_dwt_interleave_partial_h(h.mem,
                                             h.cas,
                                             sa,
                                             j,
                                             (OPJ_UINT32)h.sn,
                                             win_ll_x0,
                                             win_ll_x1,
                                             win_hl_x0,
                                             win_hl_x1);
                opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas,
                                         (OPJ_INT32)win_ll_x0,
                                         (OPJ_INT32)win_ll_x1,
                                         (OPJ_INT32)win_hl_x0,
                                         (OPJ_INT32)win_hl_x1);
                if (!opj_sparse_array_int32_write(sa,
                                                  win_tr_x0, j,
                                                  win_tr_x1, j + 1,
                                                  h.mem + win_tr_x0,
                                                  1, 0, OPJ_TRUE)) {
                    /* FIXME event manager error callback */
                    opj_sparse_array_int32_free(sa);
                    opj_aligned_free(h.mem);
                    return OPJ_FALSE;
                }
            }
        }
 
        for (i = win_tr_x0; i < win_tr_x1;) {
            OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i);
            opj_dwt_interleave_partial_v(v.mem,
                                         v.cas,
                                         sa,
                                         i,
                                         nb_cols,
                                         (OPJ_UINT32)v.sn,
                                         win_ll_y0,
                                         win_ll_y1,
                                         win_lh_y0,
                                         win_lh_y1);
            opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas,
                                              (OPJ_INT32)win_ll_y0,
                                              (OPJ_INT32)win_ll_y1,
                                              (OPJ_INT32)win_lh_y0,
                                              (OPJ_INT32)win_lh_y1);
            if (!opj_sparse_array_int32_write(sa,
                                              i, win_tr_y0,
                                              i + nb_cols, win_tr_y1,
                                              v.mem + 4 * win_tr_y0,
                                              1, 4, OPJ_TRUE)) {
                /* FIXME event manager error callback */
                opj_sparse_array_int32_free(sa);
                opj_aligned_free(h.mem);
                return OPJ_FALSE;
            }
 
            i += nb_cols;
        }
    }
    opj_aligned_free(h.mem);
 
    {
        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
                       tilec->data_win,
                       1, tr_max->win_x1 - tr_max->win_x0,
                       OPJ_TRUE);
        assert(ret);
        OPJ_UNUSED(ret);
    }
    opj_sparse_array_int32_free(sa);
    return OPJ_TRUE;
}
 
static void opj_v8dwt_interleave_h(opj_v8dwt_t* OPJ_RESTRICT dwt,
                                   OPJ_FLOAT32* OPJ_RESTRICT a,
                                   OPJ_UINT32 width,
                                   OPJ_UINT32 remaining_height)
{
    OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas);
    OPJ_UINT32 i, k;
    OPJ_UINT32 x0 = dwt->win_l_x0;
    OPJ_UINT32 x1 = dwt->win_l_x1;
 
    for (k = 0; k < 2; ++k) {
        if (remaining_height >= NB_ELTS_V8 && ((OPJ_SIZE_T) a & 0x0f) == 0 &&
                ((OPJ_SIZE_T) bi & 0x0f) == 0) {
            /* Fast code path */
            for (i = x0; i < x1; ++i) {
                OPJ_UINT32 j = i;
                OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8;
                dst[0] = a[j];
                j += width;
                dst[1] = a[j];
                j += width;
                dst[2] = a[j];
                j += width;
                dst[3] = a[j];
                j += width;
                dst[4] = a[j];
                j += width;
                dst[5] = a[j];
                j += width;
                dst[6] = a[j];
                j += width;
                dst[7] = a[j];
            }
        } else {
            /* Slow code path */
            for (i = x0; i < x1; ++i) {
                OPJ_UINT32 j = i;
                OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8;
                dst[0] = a[j];
                j += width;
                if (remaining_height == 1) {
                    continue;
                }
                dst[1] = a[j];
                j += width;
                if (remaining_height == 2) {
                    continue;
                }
                dst[2] = a[j];
                j += width;
                if (remaining_height == 3) {
                    continue;
                }
                dst[3] = a[j];
                j += width;
                if (remaining_height == 4) {
                    continue;
                }
                dst[4] = a[j];
                j += width;
                if (remaining_height == 5) {
                    continue;
                }
                dst[5] = a[j];
                j += width;
                if (remaining_height == 6) {
                    continue;
                }
                dst[6] = a[j];
                j += width;
                if (remaining_height == 7) {
                    continue;
                }
                dst[7] = a[j];
            }
        }
 
        bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas);
        a += dwt->sn;
        x0 = dwt->win_h_x0;
        x1 = dwt->win_h_x1;
    }
}
 
static void opj_v8dwt_interleave_partial_h(opj_v8dwt_t* dwt,
        opj_sparse_array_int32_t* sa,
        OPJ_UINT32 sa_line,
        OPJ_UINT32 remaining_height)
{
    OPJ_UINT32 i;
    for (i = 0; i < remaining_height; i++) {
        OPJ_BOOL ret;
        ret = opj_sparse_array_int32_read(sa,
                                          dwt->win_l_x0, sa_line + i,
                                          dwt->win_l_x1, sa_line + i + 1,
                                          /* Nasty cast from float* to int32* */
                                          (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
                                          2 * NB_ELTS_V8, 0, OPJ_TRUE);
        assert(ret);
        ret = opj_sparse_array_int32_read(sa,
                                          (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
                                          (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
                                          /* Nasty cast from float* to int32* */
                                          (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
                                          2 * NB_ELTS_V8, 0, OPJ_TRUE);
        assert(ret);
        OPJ_UNUSED(ret);
    }
}
 
static INLINE void opj_v8dwt_interleave_v(opj_v8dwt_t* OPJ_RESTRICT dwt,
        OPJ_FLOAT32* OPJ_RESTRICT a,
        OPJ_UINT32 width,
        OPJ_UINT32 nb_elts_read)
{
    opj_v8_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas;
    OPJ_UINT32 i;
 
    for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) {
        memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
               (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
    }
 
    a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width;
    bi = dwt->wavelet + 1 - dwt->cas;
 
    for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) {
        memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
               (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
    }
}
 
static void opj_v8dwt_interleave_partial_v(opj_v8dwt_t* OPJ_RESTRICT dwt,
        opj_sparse_array_int32_t* sa,
        OPJ_UINT32 sa_col,
        OPJ_UINT32 nb_elts_read)
{
    OPJ_BOOL ret;
    ret = opj_sparse_array_int32_read(sa,
                                      sa_col, dwt->win_l_x0,
                                      sa_col + nb_elts_read, dwt->win_l_x1,
                                      (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0),
                                      1, 2 * NB_ELTS_V8, OPJ_TRUE);
    assert(ret);
    ret = opj_sparse_array_int32_read(sa,
                                      sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
                                      sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
                                      (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0),
                                      1, 2 * NB_ELTS_V8, OPJ_TRUE);
    assert(ret);
    OPJ_UNUSED(ret);
}
 
#ifdef __SSE__
 
static void opj_v8dwt_decode_step1_sse(opj_v8_t* w,
                                       OPJ_UINT32 start,
                                       OPJ_UINT32 end,
                                       const __m128 c)
{
    __m128* OPJ_RESTRICT vw = (__m128*) w;
    OPJ_UINT32 i = start;
    /* To be adapted if NB_ELTS_V8 changes */
    vw += 4 * start;
    /* Note: attempt at loop unrolling x2 doesn't help */
    for (; i < end; ++i, vw += 4) {
        vw[0] = _mm_mul_ps(vw[0], c);
        vw[1] = _mm_mul_ps(vw[1], c);
    }
}
 
static void opj_v8dwt_decode_step2_sse(opj_v8_t* l, opj_v8_t* w,
                                       OPJ_UINT32 start,
                                       OPJ_UINT32 end,
                                       OPJ_UINT32 m,
                                       __m128 c)
{
    __m128* OPJ_RESTRICT vl = (__m128*) l;
    __m128* OPJ_RESTRICT vw = (__m128*) w;
    /* To be adapted if NB_ELTS_V8 changes */
    OPJ_UINT32 i;
    OPJ_UINT32 imax = opj_uint_min(end, m);
    if (start == 0) {
        if (imax >= 1) {
            vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), c));
            vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), c));
            vw += 4;
            start = 1;
        }
    } else {
        vw += start * 4;
    }
 
    i = start;
    /* Note: attempt at loop unrolling x2 doesn't help */
    for (; i < imax; ++i) {
        vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), c));
        vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), c));
        vw += 4;
    }
    if (m < end) {
        assert(m + 1 == end);
        c = _mm_add_ps(c, c);
        vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(c, vw[-4]));
        vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(c, vw[-3]));
    }
}
 
#else
 
static void opj_v8dwt_decode_step1(opj_v8_t* w,
                                   OPJ_UINT32 start,
                                   OPJ_UINT32 end,
                                   const OPJ_FLOAT32 c)
{
    OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w;
    OPJ_UINT32 i;
    /* To be adapted if NB_ELTS_V8 changes */
    for (i = start; i < end; ++i) {
        fw[i * 2 * 8    ] = fw[i * 2 * 8    ] * c;
        fw[i * 2 * 8 + 1] = fw[i * 2 * 8 + 1] * c;
        fw[i * 2 * 8 + 2] = fw[i * 2 * 8 + 2] * c;
        fw[i * 2 * 8 + 3] = fw[i * 2 * 8 + 3] * c;
        fw[i * 2 * 8 + 4] = fw[i * 2 * 8 + 4] * c;
        fw[i * 2 * 8 + 5] = fw[i * 2 * 8 + 5] * c;
        fw[i * 2 * 8 + 6] = fw[i * 2 * 8 + 6] * c;
        fw[i * 2 * 8 + 7] = fw[i * 2 * 8 + 7] * c;
    }
}
 
static void opj_v8dwt_decode_step2(opj_v8_t* l, opj_v8_t* w,
                                   OPJ_UINT32 start,
                                   OPJ_UINT32 end,
                                   OPJ_UINT32 m,
                                   OPJ_FLOAT32 c)
{
    OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l;
    OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w;
    OPJ_UINT32 i;
    OPJ_UINT32 imax = opj_uint_min(end, m);
    if (start > 0) {
        fw += 2 * NB_ELTS_V8 * start;
        fl = fw - 2 * NB_ELTS_V8;
    }
    /* To be adapted if NB_ELTS_V8 changes */
    for (i = start; i < imax; ++i) {
        fw[-8] = fw[-8] + ((fl[0] + fw[0]) * c);
        fw[-7] = fw[-7] + ((fl[1] + fw[1]) * c);
        fw[-6] = fw[-6] + ((fl[2] + fw[2]) * c);
        fw[-5] = fw[-5] + ((fl[3] + fw[3]) * c);
        fw[-4] = fw[-4] + ((fl[4] + fw[4]) * c);
        fw[-3] = fw[-3] + ((fl[5] + fw[5]) * c);
        fw[-2] = fw[-2] + ((fl[6] + fw[6]) * c);
        fw[-1] = fw[-1] + ((fl[7] + fw[7]) * c);
        fl = fw;
        fw += 2 * NB_ELTS_V8;
    }
    if (m < end) {
        assert(m + 1 == end);
        c += c;
        fw[-8] = fw[-8] + fl[0] * c;
        fw[-7] = fw[-7] + fl[1] * c;
        fw[-6] = fw[-6] + fl[2] * c;
        fw[-5] = fw[-5] + fl[3] * c;
        fw[-4] = fw[-4] + fl[4] * c;
        fw[-3] = fw[-3] + fl[5] * c;
        fw[-2] = fw[-2] + fl[6] * c;
        fw[-1] = fw[-1] + fl[7] * c;
    }
}
 
#endif
 
/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
static void opj_v8dwt_decode(opj_v8dwt_t* OPJ_RESTRICT dwt)
{
    OPJ_INT32 a, b;
    /* BUG_WEIRD_TWO_INVK (look for this identifier in tcd.c) */
    /* Historic value for 2 / opj_invK */
    /* Normally, we should use invK, but if we do so, we have failures in the */
    /* conformance test, due to MSE and peak errors significantly higher than */
    /* accepted value */
    /* Due to using two_invK instead of invK, we have to compensate in tcd.c */
    /* the computation of the stepsize for the non LL subbands */
    const float two_invK = 1.625732422f;
    if (dwt->cas == 0) {
        if (!((dwt->dn > 0) || (dwt->sn > 1))) {
            return;
        }
        a = 0;
        b = 1;
    } else {
        if (!((dwt->sn > 0) || (dwt->dn > 1))) {
            return;
        }
        a = 1;
        b = 0;
    }
#ifdef __SSE__
    opj_v8dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
                               _mm_set1_ps(opj_K));
    opj_v8dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
                               _mm_set1_ps(two_invK));
    opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
                               dwt->win_l_x0, dwt->win_l_x1,
                               (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
                               _mm_set1_ps(-opj_dwt_delta));
    opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
                               dwt->win_h_x0, dwt->win_h_x1,
                               (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
                               _mm_set1_ps(-opj_dwt_gamma));
    opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
                               dwt->win_l_x0, dwt->win_l_x1,
                               (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
                               _mm_set1_ps(-opj_dwt_beta));
    opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
                               dwt->win_h_x0, dwt->win_h_x1,
                               (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
                               _mm_set1_ps(-opj_dwt_alpha));
#else
    opj_v8dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
                           opj_K);
    opj_v8dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
                           two_invK);
    opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
                           dwt->win_l_x0, dwt->win_l_x1,
                           (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
                           -opj_dwt_delta);
    opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
                           dwt->win_h_x0, dwt->win_h_x1,
                           (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
                           -opj_dwt_gamma);
    opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
                           dwt->win_l_x0, dwt->win_l_x1,
                           (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
                           -opj_dwt_beta);
    opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
                           dwt->win_h_x0, dwt->win_h_x1,
                           (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
                           -opj_dwt_alpha);
#endif
}
 
typedef struct {
    opj_v8dwt_t h;
    OPJ_UINT32 rw;
    OPJ_UINT32 w;
    OPJ_FLOAT32 * OPJ_RESTRICT aj;
    OPJ_UINT32 nb_rows;
} opj_dwt97_decode_h_job_t;
 
static void opj_dwt97_decode_h_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt97_decode_h_job_t* job;
    OPJ_FLOAT32 * OPJ_RESTRICT aj;
    OPJ_UINT32 w;
    (void)tls;
 
    job = (opj_dwt97_decode_h_job_t*)user_data;
    w = job->w;
 
    assert((job->nb_rows % NB_ELTS_V8) == 0);
 
    aj = job->aj;
    for (j = 0; j + NB_ELTS_V8 <= job->nb_rows; j += NB_ELTS_V8) {
        OPJ_UINT32 k;
        opj_v8dwt_interleave_h(&job->h, aj, job->w, NB_ELTS_V8);
        opj_v8dwt_decode(&job->h);
 
        /* To be adapted if NB_ELTS_V8 changes */
        for (k = 0; k < job->rw; k++) {
            aj[k      ] = job->h.wavelet[k].f[0];
            aj[k + (OPJ_SIZE_T)w  ] = job->h.wavelet[k].f[1];
            aj[k + (OPJ_SIZE_T)w * 2] = job->h.wavelet[k].f[2];
            aj[k + (OPJ_SIZE_T)w * 3] = job->h.wavelet[k].f[3];
        }
        for (k = 0; k < job->rw; k++) {
            aj[k + (OPJ_SIZE_T)w * 4] = job->h.wavelet[k].f[4];
            aj[k + (OPJ_SIZE_T)w * 5] = job->h.wavelet[k].f[5];
            aj[k + (OPJ_SIZE_T)w * 6] = job->h.wavelet[k].f[6];
            aj[k + (OPJ_SIZE_T)w * 7] = job->h.wavelet[k].f[7];
        }
 
        aj += w * NB_ELTS_V8;
    }
 
    opj_aligned_free(job->h.wavelet);
    opj_free(job);
}
 
 
typedef struct {
    opj_v8dwt_t v;
    OPJ_UINT32 rh;
    OPJ_UINT32 w;
    OPJ_FLOAT32 * OPJ_RESTRICT aj;
    OPJ_UINT32 nb_columns;
} opj_dwt97_decode_v_job_t;
 
static void opj_dwt97_decode_v_func(void* user_data, opj_tls_t* tls)
{
    OPJ_UINT32 j;
    opj_dwt97_decode_v_job_t* job;
    OPJ_FLOAT32 * OPJ_RESTRICT aj;
    (void)tls;
 
    job = (opj_dwt97_decode_v_job_t*)user_data;
 
    assert((job->nb_columns % NB_ELTS_V8) == 0);
 
    aj = job->aj;
    for (j = 0; j + NB_ELTS_V8 <= job->nb_columns; j += NB_ELTS_V8) {
        OPJ_UINT32 k;
 
        opj_v8dwt_interleave_v(&job->v, aj, job->w, NB_ELTS_V8);
        opj_v8dwt_decode(&job->v);
 
        for (k = 0; k < job->rh; ++k) {
            memcpy(&aj[k * (OPJ_SIZE_T)job->w], &job->v.wavelet[k],
                   NB_ELTS_V8 * sizeof(OPJ_FLOAT32));
        }
        aj += NB_ELTS_V8;
    }
 
    opj_aligned_free(job->v.wavelet);
    opj_free(job);
}
 
 
/* <summary>                             */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary>                            */
static
OPJ_BOOL opj_dwt_decode_tile_97(opj_thread_pool_t* tp,
                                opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
                                OPJ_UINT32 numres)
{
    opj_v8dwt_t h;
    opj_v8dwt_t v;
 
    opj_tcd_resolution_t* res = tilec->resolutions;
 
    OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 -
                                 res->x0);    /* width of the resolution level computed */
    OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
                                 res->y0);    /* height of the resolution level computed */
 
    OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
                                                               1].x1 -
                                tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
 
    OPJ_SIZE_T l_data_size;
    const int num_threads = opj_thread_pool_get_thread_count(tp);
 
    if (numres == 1) {
        return OPJ_TRUE;
    }
 
    l_data_size = opj_dwt_max_resolution(res, numres);
    /* overflow check */
    if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) {
        /* FIXME event manager error callback */
        return OPJ_FALSE;
    }
    h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t));
    if (!h.wavelet) {
        /* FIXME event manager error callback */
        return OPJ_FALSE;
    }
    v.wavelet = h.wavelet;
 
    while (--numres) {
        OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
        OPJ_UINT32 j;
 
        h.sn = (OPJ_INT32)rw;
        v.sn = (OPJ_INT32)rh;
 
        ++res;
 
        rw = (OPJ_UINT32)(res->x1 -
                          res->x0);   /* width of the resolution level computed */
        rh = (OPJ_UINT32)(res->y1 -
                          res->y0);   /* height of the resolution level computed */
 
        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
        h.cas = res->x0 % 2;
 
        h.win_l_x0 = 0;
        h.win_l_x1 = (OPJ_UINT32)h.sn;
        h.win_h_x0 = 0;
        h.win_h_x1 = (OPJ_UINT32)h.dn;
 
        if (num_threads <= 1 || rh < 2 * NB_ELTS_V8) {
            for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) {
                OPJ_UINT32 k;
                opj_v8dwt_interleave_h(&h, aj, w, NB_ELTS_V8);
                opj_v8dwt_decode(&h);
 
                /* To be adapted if NB_ELTS_V8 changes */
                for (k = 0; k < rw; k++) {
                    aj[k      ] = h.wavelet[k].f[0];
                    aj[k + (OPJ_SIZE_T)w  ] = h.wavelet[k].f[1];
                    aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
                    aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3];
                }
                for (k = 0; k < rw; k++) {
                    aj[k + (OPJ_SIZE_T)w * 4] = h.wavelet[k].f[4];
                    aj[k + (OPJ_SIZE_T)w * 5] = h.wavelet[k].f[5];
                    aj[k + (OPJ_SIZE_T)w * 6] = h.wavelet[k].f[6];
                    aj[k + (OPJ_SIZE_T)w * 7] = h.wavelet[k].f[7];
                }
 
                aj += w * NB_ELTS_V8;
            }
        } else {
            OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
            OPJ_UINT32 step_j;
 
            if ((rh / NB_ELTS_V8) < num_jobs) {
                num_jobs = rh / NB_ELTS_V8;
            }
            step_j = ((rh / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8;
            for (j = 0; j < num_jobs; j++) {
                opj_dwt97_decode_h_job_t* job;
 
                job = (opj_dwt97_decode_h_job_t*) opj_malloc(sizeof(opj_dwt97_decode_h_job_t));
                if (!job) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(h.wavelet);
                    return OPJ_FALSE;
                }
                job->h.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t));
                if (!job->h.wavelet) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(h.wavelet);
                    return OPJ_FALSE;
                }
                job->h.dn = h.dn;
                job->h.sn = h.sn;
                job->h.cas = h.cas;
                job->h.win_l_x0 = h.win_l_x0;
                job->h.win_l_x1 = h.win_l_x1;
                job->h.win_h_x0 = h.win_h_x0;
                job->h.win_h_x1 = h.win_h_x1;
                job->rw = rw;
                job->w = w;
                job->aj = aj;
                job->nb_rows = (j + 1 == num_jobs) ? (rh & (OPJ_UINT32)~
                                                      (NB_ELTS_V8 - 1)) - j * step_j : step_j;
                aj += w * job->nb_rows;
                opj_thread_pool_submit_job(tp, opj_dwt97_decode_h_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
            j = rh & (OPJ_UINT32)~(NB_ELTS_V8 - 1);
        }
 
        if (j < rh) {
            OPJ_UINT32 k;
            opj_v8dwt_interleave_h(&h, aj, w, rh - j);
            opj_v8dwt_decode(&h);
            for (k = 0; k < rw; k++) {
                OPJ_UINT32 l;
                for (l = 0; l < rh - j; l++) {
                    aj[k + (OPJ_SIZE_T)w  * l ] = h.wavelet[k].f[l];
                }
            }
        }
 
        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
        v.cas = res->y0 % 2;
        v.win_l_x0 = 0;
        v.win_l_x1 = (OPJ_UINT32)v.sn;
        v.win_h_x0 = 0;
        v.win_h_x1 = (OPJ_UINT32)v.dn;
 
        aj = (OPJ_FLOAT32*) tilec->data;
        if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) {
            for (j = rw; j > (NB_ELTS_V8 - 1); j -= NB_ELTS_V8) {
                OPJ_UINT32 k;
 
                opj_v8dwt_interleave_v(&v, aj, w, NB_ELTS_V8);
                opj_v8dwt_decode(&v);
 
                for (k = 0; k < rh; ++k) {
                    memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], NB_ELTS_V8 * sizeof(OPJ_FLOAT32));
                }
                aj += NB_ELTS_V8;
            }
        } else {
            /* "bench_dwt -I" shows that scaling is poor, likely due to RAM
                transfer being the limiting factor. So limit the number of
                threads.
             */
            OPJ_UINT32 num_jobs = opj_uint_max((OPJ_UINT32)num_threads / 2, 2U);
            OPJ_UINT32 step_j;
 
            if ((rw / NB_ELTS_V8) < num_jobs) {
                num_jobs = rw / NB_ELTS_V8;
            }
            step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8;
            for (j = 0; j < num_jobs; j++) {
                opj_dwt97_decode_v_job_t* job;
 
                job = (opj_dwt97_decode_v_job_t*) opj_malloc(sizeof(opj_dwt97_decode_v_job_t));
                if (!job) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_aligned_free(h.wavelet);
                    return OPJ_FALSE;
                }
                job->v.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t));
                if (!job->v.wavelet) {
                    opj_thread_pool_wait_completion(tp, 0);
                    opj_free(job);
                    opj_aligned_free(h.wavelet);
                    return OPJ_FALSE;
                }
                job->v.dn = v.dn;
                job->v.sn = v.sn;
                job->v.cas = v.cas;
                job->v.win_l_x0 = v.win_l_x0;
                job->v.win_l_x1 = v.win_l_x1;
                job->v.win_h_x0 = v.win_h_x0;
                job->v.win_h_x1 = v.win_h_x1;
                job->rh = rh;
                job->w = w;
                job->aj = aj;
                job->nb_columns = (j + 1 == num_jobs) ? (rw & (OPJ_UINT32)~
                                  (NB_ELTS_V8 - 1)) - j * step_j : step_j;
                aj += job->nb_columns;
                opj_thread_pool_submit_job(tp, opj_dwt97_decode_v_func, job);
            }
            opj_thread_pool_wait_completion(tp, 0);
        }
 
        if (rw & (NB_ELTS_V8 - 1)) {
            OPJ_UINT32 k;
 
            j = rw & (NB_ELTS_V8 - 1);
 
            opj_v8dwt_interleave_v(&v, aj, w, j);
            opj_v8dwt_decode(&v);
 
            for (k = 0; k < rh; ++k) {
                memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k],
                       (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32));
            }
        }
    }
 
    opj_aligned_free(h.wavelet);
    return OPJ_TRUE;
}
 
static
OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
                                   OPJ_UINT32 numres)
{
    opj_sparse_array_int32_t* sa;
    opj_v8dwt_t h;
    opj_v8dwt_t v;
    OPJ_UINT32 resno;
    /* This value matches the maximum left/right extension given in tables */
    /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */
    /* we currently use 3. */
    const OPJ_UINT32 filter_width = 4U;
 
    opj_tcd_resolution_t* tr = tilec->resolutions;
    opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
 
    OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
                                 tr->x0);    /* width of the resolution level computed */
    OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
                                 tr->y0);    /* height of the resolution level computed */
 
    OPJ_SIZE_T l_data_size;
 
    /* Compute the intersection of the area of interest, expressed in tile coordinates */
    /* with the tile coordinates */
    OPJ_UINT32 win_tcx0 = tilec->win_x0;
    OPJ_UINT32 win_tcy0 = tilec->win_y0;
    OPJ_UINT32 win_tcx1 = tilec->win_x1;
    OPJ_UINT32 win_tcy1 = tilec->win_y1;
 
    if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
        return OPJ_TRUE;
    }
 
    sa = opj_dwt_init_sparse_array(tilec, numres);
    if (sa == NULL) {
        return OPJ_FALSE;
    }
 
    if (numres == 1U) {
        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
                       tilec->data_win,
                       1, tr_max->win_x1 - tr_max->win_x0,
                       OPJ_TRUE);
        assert(ret);
        OPJ_UNUSED(ret);
        opj_sparse_array_int32_free(sa);
        return OPJ_TRUE;
    }
 
    l_data_size = opj_dwt_max_resolution(tr, numres);
    /* overflow check */
    if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) {
        /* FIXME event manager error callback */
        opj_sparse_array_int32_free(sa);
        return OPJ_FALSE;
    }
    h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t));
    if (!h.wavelet) {
        /* FIXME event manager error callback */
        opj_sparse_array_int32_free(sa);
        return OPJ_FALSE;
    }
    v.wavelet = h.wavelet;
 
    for (resno = 1; resno < numres; resno ++) {
        OPJ_UINT32 j;
        /* Window of interest subband-based coordinates */
        OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
        OPJ_UINT32 win_hl_x0, win_hl_x1;
        OPJ_UINT32 win_lh_y0, win_lh_y1;
        /* Window of interest tile-resolution-based coordinates */
        OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
        /* Tile-resolution subband-based coordinates */
        OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
 
        ++tr;
 
        h.sn = (OPJ_INT32)rw;
        v.sn = (OPJ_INT32)rh;
 
        rw = (OPJ_UINT32)(tr->x1 - tr->x0);
        rh = (OPJ_UINT32)(tr->y1 - tr->y0);
 
        h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
        h.cas = tr->x0 % 2;
 
        v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
        v.cas = tr->y0 % 2;
 
        /* Get the subband coordinates for the window of interest */
        /* LL band */
        opj_dwt_get_band_coordinates(tilec, resno, 0,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     &win_ll_x0, &win_ll_y0,
                                     &win_ll_x1, &win_ll_y1);
 
        /* HL band */
        opj_dwt_get_band_coordinates(tilec, resno, 1,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     &win_hl_x0, NULL, &win_hl_x1, NULL);
 
        /* LH band */
        opj_dwt_get_band_coordinates(tilec, resno, 2,
                                     win_tcx0, win_tcy0, win_tcx1, win_tcy1,
                                     NULL, &win_lh_y0, NULL, &win_lh_y1);
 
        /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
        tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
        tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
        tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
        tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
 
        /* Subtract the origin of the bands for this tile, to the subwindow */
        /* of interest band coordinates, so as to get them relative to the */
        /* tile */
        win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
        win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
        win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
        win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
        win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
        win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
        win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
        win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
 
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
 
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
        opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
 
        /* Compute the tile-resolution-based coordinates for the window of interest */
        if (h.cas == 0) {
            win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
        } else {
            win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
            win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
        }
 
        if (v.cas == 0) {
            win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
        } else {
            win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
            win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
        }
 
        h.win_l_x0 = win_ll_x0;
        h.win_l_x1 = win_ll_x1;
        h.win_h_x0 = win_hl_x0;
        h.win_h_x1 = win_hl_x1;
        for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) {
            if ((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) ||
                    (j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn &&
                     j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
                opj_v8dwt_interleave_partial_h(&h, sa, j, opj_uint_min(NB_ELTS_V8, rh - j));
                opj_v8dwt_decode(&h);
                if (!opj_sparse_array_int32_write(sa,
                                                  win_tr_x0, j,
                                                  win_tr_x1, j + NB_ELTS_V8,
                                                  (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
                                                  NB_ELTS_V8, 1, OPJ_TRUE)) {
                    /* FIXME event manager error callback */
                    opj_sparse_array_int32_free(sa);
                    opj_aligned_free(h.wavelet);
                    return OPJ_FALSE;
                }
            }
        }
 
        if (j < rh &&
                ((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) ||
                 (j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn &&
                  j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
            opj_v8dwt_interleave_partial_h(&h, sa, j, rh - j);
            opj_v8dwt_decode(&h);
            if (!opj_sparse_array_int32_write(sa,
                                              win_tr_x0, j,
                                              win_tr_x1, rh,
                                              (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
                                              NB_ELTS_V8, 1, OPJ_TRUE)) {
                /* FIXME event manager error callback */
                opj_sparse_array_int32_free(sa);
                opj_aligned_free(h.wavelet);
                return OPJ_FALSE;
            }
        }
 
        v.win_l_x0 = win_ll_y0;
        v.win_l_x1 = win_ll_y1;
        v.win_h_x0 = win_lh_y0;
        v.win_h_x1 = win_lh_y1;
        for (j = win_tr_x0; j < win_tr_x1; j += NB_ELTS_V8) {
            OPJ_UINT32 nb_elts = opj_uint_min(NB_ELTS_V8, win_tr_x1 - j);
 
            opj_v8dwt_interleave_partial_v(&v, sa, j, nb_elts);
            opj_v8dwt_decode(&v);
 
            if (!opj_sparse_array_int32_write(sa,
                                              j, win_tr_y0,
                                              j + nb_elts, win_tr_y1,
                                              (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0],
                                              1, NB_ELTS_V8, OPJ_TRUE)) {
                /* FIXME event manager error callback */
                opj_sparse_array_int32_free(sa);
                opj_aligned_free(h.wavelet);
                return OPJ_FALSE;
            }
        }
    }
 
    {
        OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
                       tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
                       tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
                       tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
                       tilec->data_win,
                       1, tr_max->win_x1 - tr_max->win_x0,
                       OPJ_TRUE);
        assert(ret);
        OPJ_UNUSED(ret);
    }
    opj_sparse_array_int32_free(sa);
 
    opj_aligned_free(h.wavelet);
    return OPJ_TRUE;
}
 
 
OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
                             opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
                             OPJ_UINT32 numres)
{
    if (p_tcd->whole_tile_decoding) {
        return opj_dwt_decode_tile_97(p_tcd->thread_pool, tilec, numres);
    } else {
        return opj_dwt_decode_partial_97(tilec, numres);
    }
}
↑ V1028 Possible overflow. Consider casting operands of the 'j + 1' operator to the 'OPJ_SIZE_T' type, not the result.
↑ V1028 Possible overflow. Consider casting operands of the 'sn + j + 1' operator to the 'OPJ_SIZE_T' type, not the result.
↑ V1028 Possible overflow. Consider casting operands of the 'j + 1' operator to the 'OPJ_SIZE_T' type, not the result.
↑ V1032 The pointer 'tiledp_col' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'tmp' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'in_even' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'in_odd' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'tmp' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'in_even' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'in_odd' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'tmp' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'fw' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'tmp' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'fw' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'fw' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'fl' is cast to a more strictly aligned pointer type.
↑ V1032 The pointer 'a' is cast to a more strictly aligned pointer type.
↑ V547 Expression is always false.
↑ V547 Expression is always false.
↑ V547 Expression is always false.
↑ V547 Expression is always false.
↑ V547 Expression is always false.
↑ V1003 The macro 'OPJ_S_off' is a dangerous expression. The parameter 'off' must be surrounded by parentheses.
↑ V1003 The macro 'OPJ_D_off' is a dangerous expression. The parameter 'off' must be surrounded by parentheses.
↑ V801 Decreased performance. It is better to redefine the fourth function argument as a pointer. Consider replacing 'const .. c' with 'const .. *c'.