/* SoX Resampler Library Copyright (c) 2007-16 robs@users.sourceforge.net
* Licence for this file: LGPL v2.1 See LICENCE for details.
*
* Constant-rate resampling common code. */
#include <math.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include "filter.h"
#if defined SOXR_LIB
#include "internal.h"
#define STATIC
#endif
#include "cr.h"
#define num_coefs4 ((core_flags&CORE_SIMD_POLY)? ((num_coefs+3)&~3) : num_coefs)
#define coef_coef(C,T,x) \
C((T*)result, interp_order, num_coefs4, j, x, num_coefs4 - 1 - i)
#define STORE(C,T) { \
if (interp_order > 2) coef_coef(C,T,3) = (T)d; \
if (interp_order > 1) coef_coef(C,T,2) = (T)c; \
if (interp_order > 0) coef_coef(C,T,1) = (T)b; \
coef_coef(C,T,0) = (T)f0;}
static real * prepare_poly_fir_coefs(double const * coefs, int num_coefs,
int num_phases, int interp_order, double multiplier,
core_flags_t core_flags, alloc_t const * mem)
{
int i, j, length = num_coefs4 * num_phases * (interp_order + 1);
real * result = mem->calloc(1,(size_t)length << LOG2_SIZEOF_REAL(core_flags));
double fm1 = coefs[0], f1 = 0, f2 = 0;
for (i = num_coefs - 1; i >= 0; --i)
for (j = num_phases - 1; j >= 0; --j) {
double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */
int pos = i * num_phases + j - 1;
fm1 = pos > 0 ? coefs[pos - 1] * multiplier : 0;
switch (interp_order) {
case 1: b = f1 - f0; break;
case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break;
case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break;
default: assert(!interp_order);
}
switch (core_flags & 3) {
case 0: if (WITH_CR32 ) STORE(coef , float ); break;
case 1: if (WITH_CR64 ) STORE(coef , double); break;
case 2: if (WITH_CR32S) STORE(coef4, float ); break;
default:if (WITH_CR64S) STORE(coef4, double); break;
}
f2 = f1, f1 = f0;
}
return result;
}
#undef STORE
#undef coef_coef
#define IS_FLOAT32 (WITH_CR32 || WITH_CR32S) && \
(!(WITH_CR64 || WITH_CR64S) || sizeof_real == sizeof(float))
#define WITH_FLOAT64 WITH_CR64 || WITH_CR64S
static void dft_stage_fn(stage_t * p, fifo_t * output_fifo)
{
real * output, * dft_out;
int i, j, num_in = max(0, fifo_occupancy(&p->fifo));
rate_shared_t const * s = p->shared;
dft_filter_t const * f = &s->dft_filter[p->dft_filter_num];
int const overlap = f->num_taps - 1;
if (p->at.integer + p->L * num_in >= f->dft_length) {
fn_t const * const RDFT_CB = p->rdft_cb;
size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(p->core_flags);
div_t divd = div(f->dft_length - overlap - p->at.integer + p->L - 1, p->L);
real const * input = fifo_read_ptr(&p->fifo);
fifo_read(&p->fifo, divd.quot, NULL);
num_in -= divd.quot;
output = fifo_reserve(output_fifo, f->dft_length);
dft_out = (p->core_flags & CORE_SIMD_DFT)? p->dft_out : output;
if (lsx_is_power_of_2(p->L)) { /* F-domain */
int portion = f->dft_length / p->L;
memcpy(dft_out, input, (unsigned)portion * sizeof_real);
rdft_oforward(portion, f->dft_forward_setup, dft_out, p->dft_scratch);
if (IS_FLOAT32) {
#define dft_out ((float *)dft_out)
for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */
dft_out[i] = dft_out[(portion << 1) - i],
dft_out[i+1] = -dft_out[(portion << 1) - i + 1];
dft_out[portion] = dft_out[1];
dft_out[portion + 1] = 0;
dft_out[1] = dft_out[0];
#undef dft_out
}
else if (WITH_FLOAT64) {
#define dft_out ((double *)dft_out)
for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */
dft_out[i] = dft_out[(portion << 1) - i],
dft_out[i+1] = -dft_out[(portion << 1) - i + 1];
dft_out[portion] = dft_out[1];
dft_out[portion + 1] = 0;
dft_out[1] = dft_out[0];
#undef dft_out
}
for (portion <<= 1; i < f->dft_length; i += portion, portion <<= 1) {
memcpy((char *)dft_out + (size_t)i * sizeof_real, dft_out, (size_t)portion * sizeof_real);
if (IS_FLOAT32)
#define dft_out ((float *)dft_out)
dft_out[i + 1] = 0;
#undef dft_out
else if (WITH_FLOAT64)
#define dft_out ((double *)dft_out)
dft_out[i + 1] = 0;
#undef dft_out
}
if (p->step.integer > 0)
rdft_reorder_back(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
} else {
if (p->L == 1)
memcpy(dft_out, input, (size_t)f->dft_length * sizeof_real);
else {
memset(dft_out, 0, (size_t)f->dft_length * sizeof_real);
if (IS_FLOAT32)
for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L)
((float *)dft_out)[i] = ((float *)input)[j];
else if (WITH_FLOAT64)
for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L)
((double *)dft_out)[i] = ((double *)input)[j];
p->at.integer = p->L - 1 - divd.rem;
}
if (p->step.integer > 0)
rdft_forward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
else
rdft_oforward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch);
}
if (p->step.integer > 0) {
rdft_convolve(f->dft_length, f->dft_backward_setup, dft_out, f->coefs);
rdft_backward(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch);
if ((p->core_flags & CORE_SIMD_DFT) && p->step.integer == 1)
memcpy(output, dft_out, (size_t)f->dft_length * sizeof_real);
if (p->step.integer != 1) {
if (IS_FLOAT32)
for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j,
i += p->step.integer)
((float *)output)[j] = ((float *)dft_out)[i];
else if (WITH_FLOAT64)
for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j,
i += p->step.integer)
((double *)output)[j] = ((double *)dft_out)[i];
p->remM = i - (f->dft_length - overlap);
fifo_trim_by(output_fifo, f->dft_length - j);
}
else fifo_trim_by(output_fifo, overlap);
}
else { /* F-domain */
int m = -p->step.integer;
rdft_convolve_portion(f->dft_length >> m, dft_out, f->coefs);
rdft_obackward(f->dft_length >> m, f->dft_backward_setup, dft_out, p->dft_scratch);
if (p->core_flags & CORE_SIMD_DFT)
memcpy(output, dft_out, (size_t)(f->dft_length >> m) * sizeof_real);
fifo_trim_by(output_fifo, (((1 << m) - 1) * f->dft_length + overlap) >>m);
}
(void)RDFT_CB;
}
p->input_size = (f->dft_length - p->at.integer + p->L - 1) / p->L;
}
/* Set to 4 x nearest power of 2 or half of that */
/* if danger of causing too many cache misses. */
static int set_dft_length(int num_taps, int min, int large)
{
double d = log((double)num_taps) / log(2.);
return 1 << range_limit((int)(d + 2.77), min, max((int)(d + 1.77), large));
}
static void dft_stage_init(
unsigned instance, double Fp, double Fs, double Fn, double att,
double phase_response, stage_t * p, int L, int M, double * multiplier,
unsigned min_dft_size, unsigned large_dft_size, core_flags_t core_flags,
fn_t const * RDFT_CB)
{
dft_filter_t * f = &p->shared->dft_filter[instance];
int num_taps = 0, dft_length = f->dft_length, i, offset;
bool f_domain_m = abs(3-M) == 1 && Fs <= 1;
size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(core_flags);
if (!dft_length) {
int k = phase_response == 50 && lsx_is_power_of_2(L) && Fn == L? L << 1 : 4;
double m, * h = lsx_design_lpf(Fp, Fs, Fn, att, &num_taps, -k, -1.);
if (phase_response != 50)
lsx_fir_to_phase(&h, &num_taps, &f->post_peak, phase_response);
else f->post_peak = num_taps / 2;
dft_length = set_dft_length(num_taps, (int)min_dft_size, (int)large_dft_size);
f->coefs = rdft_calloc((size_t)dft_length, sizeof_real);
offset = dft_length - num_taps + 1;
m = (1. / dft_length) * rdft_multiplier() * L * *multiplier;
if (IS_FLOAT32) for (i = 0; i < num_taps; ++i)
((float *)f->coefs)[(i + offset) & (dft_length - 1)] =(float)(h[i] * m);
else if (WITH_FLOAT64) for (i = 0; i < num_taps; ++i)
((double *)f->coefs)[(i + offset) & (dft_length - 1)] = h[i] * m;
free(h);
}
if (rdft_flags() & RDFT_IS_SIMD)
p->dft_out = rdft_malloc(sizeof_real * (size_t)dft_length);
if (rdft_flags() & RDFT_NEEDS_SCRATCH)
p->dft_scratch = rdft_malloc(2 * sizeof_real * (size_t)dft_length);
if (!f->dft_length) {
void * coef_setup = rdft_forward_setup(dft_length);
int Lp = lsx_is_power_of_2(L)? L : 1;
int Mp = f_domain_m? M : 1;
f->dft_forward_setup = rdft_forward_setup(dft_length / Lp);
f->dft_backward_setup = rdft_backward_setup(dft_length / Mp);
if (Mp == 1)
rdft_forward(dft_length, coef_setup, f->coefs, p->dft_scratch);
else
rdft_oforward(dft_length, coef_setup, f->coefs, p->dft_scratch);
rdft_delete_setup(coef_setup);
f->num_taps = num_taps;
f->dft_length = dft_length;
lsx_debug("fir_len=%i dft_length=%i Fp=%g Fs=%g Fn=%g att=%g %i/%i",
num_taps, dft_length, Fp, Fs, Fn, att, L, M);
}
*multiplier = 1;
p->out_in_ratio = (double)L / M;
p->core_flags = core_flags;
p->rdft_cb = RDFT_CB;
p->fn = dft_stage_fn;
p->preload = f->post_peak / L;
p->at.integer = f->post_peak % L;
p->L = L;
p->step.integer = f_domain_m? -M/2 : M;
p->dft_filter_num = instance;
p->block_len = f->dft_length - (f->num_taps - 1);
p->phase0 = p->at.integer / p->L;
p->input_size = (f->dft_length - p->at.integer + p->L - 1) / p->L;
}
static struct half_fir_info const * find_half_fir(
struct half_fir_info const * firs, size_t len, double att)
{
size_t i;
for (i = 0; i + 1 < len && att > firs[i].att; ++i);
return &firs[i];
}
#define have_pre_stage (preM * preL != 1)
#define have_arb_stage (arbM * arbL != 1)
#define have_post_stage (postM * postL != 1)
#include "soxr.h"
STATIC char const * _soxr_init(
rate_t * const p, /* Per audio channel. */
rate_shared_t * const shared, /* By channels undergoing same rate change. */
double const io_ratio, /* Input rate divided by output rate. */
soxr_quality_spec_t const * const q_spec,
soxr_runtime_spec_t const * const r_spec,
double multiplier, /* Linear gain to apply during conversion. */
cr_core_t const * const core,
core_flags_t const core_flags)
{
size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(core_flags);
double const tolerance = 1 + 1e-5;
double bits = q_spec->precision;
rolloff_t const rolloff = (rolloff_t)(q_spec->flags & 3);
int interpolator = (int)(r_spec->flags & 3) - 1;
double const Fp0 = q_spec->passband_end, Fs0 = q_spec->stopband_begin;
double const phase_response = q_spec->phase_response, tbw0 = Fs0-Fp0;
bool const maintain_3dB_pt = !!(q_spec->flags & SOXR_MAINTAIN_3DB_PT);
double tbw_tighten = 1, alpha;
#define tighten(x) (Fs0-(Fs0-(x))*tbw_tighten)
double arbM = io_ratio, Fn1, Fp1 = Fp0, Fs1 = Fs0, bits1 = min(bits,33);
double att = (bits1 + 1) * linear_to_dB(2.), attArb = att; /* +1: pass+stop */
int preL = 1, preM = 1, shr = 0, arbL = 1, postL = 1, postM = 1;
bool upsample=false, rational=false, iOpt=!(r_spec->flags&SOXR_NOSMALLINTOPT);
bool lq_bits= (q_spec->flags & SOXR_PROMOTE_TO_LQ)? bits <= 16 : bits == 16;
bool lq_Fp0 = (q_spec->flags & SOXR_PROMOTE_TO_LQ)? Fp0<=lq_bw0 : Fp0==lq_bw0;
int n = 0, i, mode = lq_bits && rolloff == rolloff_medium? io_ratio > 1 ||
phase_response != 50 || !lq_Fp0 || Fs0 != 1 : ((int)ceil(bits1) - 6) / 4;
struct half_fir_info const * half_fir_info;
stage_t * s;
if (io_ratio < 1 && Fs0 - 1 > 1 - Fp0 / tolerance)
return "imaging greater than rolloff";
if (.002 / tolerance > tbw0 || tbw0 > .5 * tolerance)
return "transition bandwidth not in [0.2,50] % of nyquist";
if (.5 / tolerance > Fp0 || Fs0 > 1.5 * tolerance)
return "transition band not within [50,150] % of nyquist";
if (bits!=0 && (15 > bits || bits > 33))
return "precision not in [15,33] bits";
if (io_ratio <= 0)
return "resampling factor not positive";
if (0 > phase_response || phase_response > 100)
return "phase response not in [0=min-phase,100=max-phase] %";
p->core = core;
p->io_ratio = io_ratio;
if (bits!=0) while (!n++) { /* Determine stages: */
int try, L, M, x, maxL = interpolator > 0? 1 : mode? 2048 :
(int)ceil(r_spec->coef_size_kbytes * 1000. / (U100_l * (int)sizeof_real));
double d, epsilon = 0, frac;
upsample = arbM < 1;
for (i = (int)(.5 * arbM), shr = 0; i >>= 1; arbM *= .5, ++shr);
preM = upsample || (arbM > 1.5 && arbM < 2);
postM = 1 + (arbM > 1 && preM), arbM /= postM;
preL = 1 + (!preM && arbM < 2) + (upsample && mode), arbM *= preL;
if ((frac = arbM - (int)arbM)!=0)
epsilon = fabs(floor(frac * MULT32 + .5) / (frac * MULT32) - 1);
for (i = 1, rational = frac==0; i <= maxL && !rational; ++i) {
d = frac * i, try = (int)(d + .5);
if ((rational = fabs(try / d - 1) <= epsilon)) { /* No long doubles! */
if (try == i)
arbM = ceil(arbM), shr += x = arbM > 3, arbM /= 1 + x;
else arbM = i * (int)arbM + try, arbL = i;
}
}
L = preL * arbL, M = (int)(arbM * postM), x = (L|M)&1, L >>= !x, M >>= !x;
if (iOpt && postL == 1 && (d = preL * arbL / arbM) > 4 && d != 5) {
for (postL = 4, i = (int)(d / 16); (i >>= 1) && postL < 256; postL <<= 1);
arbM = arbM * postL / arbL / preL, arbL = 1, n = 0;
} else if (rational && (max(L, M) < 3 + 2 * iOpt || L * M < 6 * iOpt))
preL = L, preM = M, arbM = arbL = postM = 1;
if (!mode && (!rational || !n))
++mode, n = 0;
}
p->num_stages = shr + have_pre_stage + have_arb_stage + have_post_stage;
if (!p->num_stages && multiplier != 1) {
bits = arbL = 0; /* Use cubic_stage in this case. */
++p->num_stages;
}
p->stages = calloc((size_t)p->num_stages + 1, sizeof(*p->stages));
if (!p->stages)
return "out of memory";
for (i = 0; i < p->num_stages; ++i) {
p->stages[i].num = i;
p->stages[i].shared = shared;
p->stages[i].input_size = 8192;
}
p->stages[0].is_input = true;
alpha = postM / (io_ratio * (postL << 0));
if ((n = p->num_stages) > 1) { /* Att. budget: */
if (have_arb_stage)
att += linear_to_dB(2.), attArb = att, --n;
att += linear_to_dB((double)n);
}
half_fir_info = find_half_fir(core->half_firs, core->half_firs_len, att);
for (i = 0, s = p->stages; i < shr; ++i, ++s) {
s->fn = half_fir_info->fn;
s->coefs = half_fir_info->coefs;
s->n = half_fir_info->num_coefs;
s->pre_post = 4 * s->n;
s->preload = s->pre = s->pre_post >> 1;
}
if (have_pre_stage) {
if (maintain_3dB_pt && have_post_stage) { /* Trans. bands overlapping. */
double x = tbw0 * lsx_inv_f_resp(-3., att);
x = -lsx_f_resp(x / (max(2 * alpha - Fs0, alpha) - Fp0), att);
if (x > .035) {
tbw_tighten = ((4.3074e-3 - 3.9121e-4 * x) * x - .040009) * x + 1.0014;
lsx_debug("tbw_tighten=%g (%gdB)", tbw_tighten, x);
}
}
Fn1 = preM? max(preL, preM) : arbM / arbL;
dft_stage_init(0, tighten(Fp1), Fs1, Fn1, att, phase_response, s++, preL,
max(preM, 1), &multiplier, r_spec->log2_min_dft_size,
r_spec->log2_large_dft_size, core_flags, core->rdft_cb);
Fp1 /= Fn1, Fs1 /= Fn1;
}
if (bits==0 && have_arb_stage) { /* `Quick' cubic arb stage: */
s->fn = core->cubic_stage_fn;
s->mult = multiplier, multiplier = 1;
s->step.whole = (int64_t)(arbM * MULT32 + .5);
s->pre_post = max(3, s->step.integer);
s->preload = s->pre = 1;
s->out_in_ratio = MULT32 / (double)s->step.whole;
}
else if (have_arb_stage) { /* Higher quality arb stage: */
static const float rolloffs[] = {-.01f, -.3f, 0, -.103f};
poly_fir_t const * f = &core->poly_firs[6*(upsample+!!preM)+mode-!upsample];
int order, num_coefs = (int)f->interp[0].scalar, phase_bits, phases;
size_t coefs_size;
double at, Fp = Fp1, Fs, Fn, mult = upsample? 1 : arbM / arbL;
poly_fir1_t const * f1;
if (!upsample && preM)
Fn = 2 * mult, Fs = 3 + fabs(Fs1 - 1);
else Fn = 1, Fs = 2 - (mode? Fp1 + (Fs1 - Fp1) * .7 : Fs1);
if (mode)
Fp = Fs - (Fs - Fp) / (1 - lsx_inv_f_resp(rolloffs[rolloff], attArb));
i = (interpolator < 0? !rational : max(interpolator, !rational)) - 1;
do {
f1 = &f->interp[++i];
assert(f1->fn);
if (i)
arbM /= arbL, arbL = 1, rational = false;
phase_bits = (int)ceil(f1->scalar - log(mult)/log(2.));
phases = !rational? (1 << phase_bits) : arbL;
if (f->interp[0].scalar==0) {
int phases0 = max(phases, 19), n0 = 0;
lsx_design_lpf(Fp, Fs, -Fn, attArb, &n0, phases0, f->beta);
num_coefs = n0 / phases0 + 1, num_coefs += num_coefs & !preM;
}
if ((num_coefs & 1) && rational && (arbL & 1))
phases <<= 1, arbL <<= 1, arbM *= 2;
at = arbL * (s->phase0 = .5 * (num_coefs & 1));
order = i + (i && mode > 4);
coefs_size = (size_t)(num_coefs4 * phases * (order+1)) * sizeof_real;
} while (interpolator < 0 && i < 2 && f->interp[i+1].fn &&
coefs_size / 1000 > r_spec->coef_size_kbytes);
if (!s->shared->poly_fir_coefs) {
int num_taps = num_coefs * phases - 1;
double * coefs = lsx_design_lpf(
Fp, Fs, Fn, attArb, &num_taps, phases, f->beta);
s->shared->poly_fir_coefs = prepare_poly_fir_coefs(
coefs, num_coefs, phases, order, multiplier, core_flags, &core->mem);
lsx_debug("fir_len=%i phases=%i coef_interp=%i size=%.3gk",
num_coefs, phases, order, (double)coefs_size / 1000.);
free(coefs);
}
multiplier = 1;
s->fn = f1->fn;
s->pre_post = num_coefs4 - 1;
s->preload = ((num_coefs - 1) >> 1) + (num_coefs4 - num_coefs);
s->n = num_coefs4;
s->phase_bits = phase_bits;
s->L = arbL;
s->use_hi_prec_clock =
mode>1 && (q_spec->flags & SOXR_HI_PREC_CLOCK) && !rational;
#if WITH_FLOAT_STD_PREC_CLOCK
if (order && !s->use_hi_prec_clock) {
s->at.flt = at;
s->step.flt = arbM;
s->out_in_ratio = (double)(arbL / s->step.flt);
} else
#endif
{
s->at.whole = (int64_t)(at * MULT32 + .5);
#if WITH_HI_PREC_CLOCK
if (s->use_hi_prec_clock) {
double M = arbM * MULT32;
s->at.fix.ls.parts.ms = 0x80000000ul;
s->step.whole = (int64_t)M;
M -= (double)s->step.whole;
M *= MULT32 * MULT32;
s->step.fix.ls.all = (uint64_t)M;
} else
#endif
s->step.whole = (int64_t)(arbM * MULT32 + .5);
s->out_in_ratio = MULT32 * arbL / (double)s->step.whole;
}
++s;
}
if (have_post_stage)
dft_stage_init(1, tighten(Fp0 / (upsample? alpha : 1)), upsample? max(2 -
Fs0 / alpha, 1) : Fs0, (double)max(postL, postM), att, phase_response,
s++, postL, postM, &multiplier, r_spec->log2_min_dft_size,
r_spec->log2_large_dft_size, core_flags, core->rdft_cb);
lsx_debug("%g: >>%i %i/%i %i/%g %i/%i (%x)", 1/io_ratio,
shr, preL, preM, arbL, arbM, postL, postM, core_flags);
for (i = 0, s = p->stages; i < p->num_stages; ++i, ++s) {
fifo_create(&s->fifo, (int)sizeof_real);
memset(fifo_reserve(&s->fifo, s->preload), 0,
sizeof_real * (size_t)s->preload);
lsx_debug_more("%5i|%-5i preload=%i remL=%i",
s->pre, s->pre_post-s->pre, s->preload, s->at.integer);
}
fifo_create(&s->fifo, (int)sizeof_real);
return 0;
}
static bool stage_process(stage_t * stage, bool flushing)
{
fifo_t * fifo = &stage->fifo;
bool done = false;
int want;
while (!done && (want = stage->input_size - fifo_occupancy(fifo)) > 0) {
if (stage->is_input) {
if (flushing)
memset(fifo_reserve(fifo, want), 0, fifo->item_size * (size_t)want);
else done = true;
}
else done = stage_process(stage - 1, flushing);
}
stage->fn(stage, &stage[1].fifo);
return done && fifo_occupancy(fifo) < stage->input_size;
}
STATIC void _soxr_process(rate_t * p, size_t olen)
{
int const n = p->flushing? min(-(int)p->samples_out, (int)olen) : (int)olen;
stage_t * stage = &p->stages[p->num_stages];
fifo_t * fifo = &stage->fifo;
bool done = false;
while (!done && fifo_occupancy(fifo) < (int)n)
done = stage->is_input || stage_process(stage - 1, p->flushing);
}
STATIC real * _soxr_input(rate_t * p, real const * samples, size_t n)
{
if (p->flushing)
return 0;
p->samples_in += (int64_t)n;
return fifo_write(&p->stages[0].fifo, (int)n, samples);
}
STATIC real const * _soxr_output(rate_t * p, real * samples, size_t * n0)
{
fifo_t * fifo = &p->stages[p->num_stages].fifo;
int n = p->flushing? min(-(int)p->samples_out, (int)*n0) : (int)*n0;
p->samples_out += n = min(n, fifo_occupancy(fifo));
return fifo_read(fifo, (int)(*n0 = (size_t)n), samples);
}
STATIC void _soxr_flush(rate_t * p)
{
if (p->flushing) return;
p->samples_out -= (int64_t)((double)p->samples_in / p->io_ratio + .5);
p->samples_in = 0;
p->flushing = true;
}
STATIC void _soxr_close(rate_t * p)
{
if (p->stages) {
fn_t const * const RDFT_CB = p->core->rdft_cb;
rate_shared_t * shared = p->stages[0].shared;
int i;
for (i = 0; i <= p->num_stages; ++i) {
stage_t * s = &p->stages[i];
rdft_free(s->dft_scratch);
rdft_free(s->dft_out);
fifo_delete(&s->fifo);
}
if (shared) {
for (i = 0; i < 2; ++i) {
dft_filter_t * f= &shared->dft_filter[i];
rdft_free(f->coefs);
rdft_delete_setup(f->dft_forward_setup);
rdft_delete_setup(f->dft_backward_setup);
}
p->core->mem.free(shared->poly_fir_coefs);
memset(shared, 0, sizeof(*shared));
}
free(p->stages);
(void)RDFT_CB;
}
}
#if defined SOXR_LIB
STATIC double _soxr_delay(rate_t * p)
{
return (double)p->samples_in / p->io_ratio - (double)p->samples_out;
}
STATIC void _soxr_sizes(size_t * shared, size_t * channel)
{
*shared = sizeof(rate_shared_t);
*channel = sizeof(rate_t);
}
#endif
↑ V564 The '&' operator is applied to bool type value. You've probably forgotten to include parentheses or intended to use the '&&' operator.
↑ V547 Expression '!rational' is always true.
↑ V636 The 'p->at.fix.ms.parts.ms / p->L' expression was implicitly cast from 'int' type to 'double' type. Consider utilizing an explicit type cast to avoid the loss of a fractional part. An example: double A = (double)(X) / Y;.
↑ V550 An odd precise comparison: Fn == L. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: phase_response == 50. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: phase_response != 50. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: bits == 16. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: Fp0 == (1385 / 2048.). It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: Fs0 != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: phase_response != 50. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: bits != 0. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: bits != 0. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: (frac = arbM - (int) arbM) != 0. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: frac == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: d != 5. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: arbM * arbL != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: multiplier != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: arbM * arbL != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: arbM * arbL != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: bits == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V550 An odd precise comparison: arbM * arbL != 1. It's probably better to use a comparison with defined precision: fabs(A - B) > Epsilon.
↑ V550 An odd precise comparison: f->interp[0].scalar == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.
↑ V575 The potential null pointer is passed into 'memcpy' function. Inspect the first argument.
↑ V575 The potential null pointer is passed into 'memcpy' function. Inspect the second argument.
↑ V575 The potential null pointer is passed into 'memcpy' function. Inspect the first argument.
↑ V575 The potential null pointer is passed into 'memset' function. Inspect the first argument.
↑ V575 The potential null pointer is passed into 'memset' function. Inspect the first argument.
↑ V636 The 'i * (int) arbM' expression was implicitly cast from 'int' type to 'double' type. Consider utilizing an explicit type cast to avoid overflow. An example: double A = (double)(X) * Y;.
↑ V636 The 'preL * arbL' expression was implicitly cast from 'int' type to 'double' type. Consider utilizing an explicit type cast to avoid overflow. An example: double A = (double)(X) * Y;.