//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2020 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
 
#include "lcms2_internal.h"
 
//      inter PCS conversions XYZ <-> CIE L* a* b*
/*
 
 
       CIE 15:2004 CIELab is defined as:
 
       L* = 116*f(Y/Yn) - 16                     0 <= L* <= 100
       a* = 500*[f(X/Xn) - f(Y/Yn)]
       b* = 200*[f(Y/Yn) - f(Z/Zn)]
 
       and
 
              f(t) = t^(1/3)                     1 >= t >  (24/116)^3
                     (841/108)*t + (16/116)      0 <= t <= (24/116)^3
 
 
       Reverse transform is:
 
       X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3   if (X/Xn) > (24/116)
         = Xn*(a* / 500 + L* / 116) / 7.787      if (X/Xn) <= (24/116)
 
 
 
       PCS in Lab2 is encoded as:
 
              8 bit Lab PCS:
 
                     L*      0..100 into a 0..ff byte.
                     a*      t + 128 range is -128.0  +127.0
                     b*
 
             16 bit Lab PCS:
 
                     L*     0..100  into a 0..ff00 word.
                     a*     t + 128  range is  -128.0  +127.9961
                     b*
 
 
 
Interchange Space   Component     Actual Range        Encoded Range
CIE XYZ             X             0 -> 1.99997        0x0000 -> 0xffff
CIE XYZ             Y             0 -> 1.99997        0x0000 -> 0xffff
CIE XYZ             Z             0 -> 1.99997        0x0000 -> 0xffff
 
Version 2,3
-----------
 
CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xff00
CIELAB (16 bit)     a*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
CIELAB (16 bit)     b*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
 
 
Version 4
---------
 
CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xffff
CIELAB (16 bit)     a*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
CIELAB (16 bit)     b*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
 
*/
 
// Conversions
void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source)
{
    cmsFloat64Number ISum;
 
    ISum = 1./(Source -> X + Source -> Y + Source -> Z);
 
    Dest -> x = (Source -> X) * ISum;
    Dest -> y = (Source -> Y) * ISum;
    Dest -> Y = Source -> Y;
}
 
void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source)
{
    Dest -> X = (Source -> x / Source -> y) * Source -> Y;
    Dest -> Y = Source -> Y;
    Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
}
 
/*
       The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus 
       primary (0.008856).  Generally, this only happens for 
       nearly ideal blacks and for some orange / amber colors in transmission mode.  
       For example, the Z value of the orange turn indicator lamp lens on an 
       automobile will often be below this value.  But the Z does not 
       contribute to the perceived color directly.
*/
 
static
cmsFloat64Number f(cmsFloat64Number t)
{
    const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0);
 
    if (t <= Limit)
        return (841.0/108.0) * t + (16.0/116.0);
    else
        return pow(t, 1.0/3.0);
}
 
static
cmsFloat64Number f_1(cmsFloat64Number t)
{
    const cmsFloat64Number Limit = (24.0/116.0);
 
    if (t <= Limit) {
        return (108.0/841.0) * (t - (16.0/116.0));
    }
 
    return t * t * t;
}
 
 
// Standard XYZ to Lab. it can handle negative XZY numbers in some cases
void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz)
{
    cmsFloat64Number fx, fy, fz;
 
    if (WhitePoint == NULL)
        WhitePoint = cmsD50_XYZ();
 
    fx = f(xyz->X / WhitePoint->X);
    fy = f(xyz->Y / WhitePoint->Y);
    fz = f(xyz->Z / WhitePoint->Z);
 
    Lab->L = 116.0*fy - 16.0;
    Lab->a = 500.0*(fx - fy);
    Lab->b = 200.0*(fy - fz);
}
 
 
// Standard XYZ to Lab. It can return negative XYZ in some cases
void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz,  const cmsCIELab* Lab)
{
    cmsFloat64Number x, y, z;
 
    if (WhitePoint == NULL)
        WhitePoint = cmsD50_XYZ();
 
    y = (Lab-> L + 16.0) / 116.0;
    x = y + 0.002 * Lab -> a;
    z = y - 0.005 * Lab -> b;
 
    xyz -> X = f_1(x) * WhitePoint -> X;
    xyz -> Y = f_1(y) * WhitePoint -> Y;
    xyz -> Z = f_1(z) * WhitePoint -> Z;
 
}
 
static
cmsFloat64Number L2float2(cmsUInt16Number v)
{
    return (cmsFloat64Number) v / 652.800;
}
 
// the a/b part
static
cmsFloat64Number ab2float2(cmsUInt16Number v)
{
    return ((cmsFloat64Number) v / 256.0) - 128.0;
}
 
static
cmsUInt16Number L2Fix2(cmsFloat64Number L)
{
    return _cmsQuickSaturateWord(L *  652.8);
}
 
static
cmsUInt16Number ab2Fix2(cmsFloat64Number ab)
{
    return _cmsQuickSaturateWord((ab + 128.0) * 256.0);
}
 
 
static
cmsFloat64Number L2float4(cmsUInt16Number v)
{
    return (cmsFloat64Number) v / 655.35;
}
 
// the a/b part
static
cmsFloat64Number ab2float4(cmsUInt16Number v)
{
    return ((cmsFloat64Number) v / 257.0) - 128.0;
}
 
 
void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
{
        Lab->L = L2float2(wLab[0]);
        Lab->a = ab2float2(wLab[1]);
        Lab->b = ab2float2(wLab[2]);
}
 
 
void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
{
        Lab->L = L2float4(wLab[0]);
        Lab->a = ab2float4(wLab[1]);
        Lab->b = ab2float4(wLab[2]);
}
 
static
cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L)
{
    const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00;
 
    if (L < 0) L = 0;
    if (L > L_max) L = L_max;
 
    return L;
}
 
 
static
cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab)
{
    if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2;
    if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2;
 
    return ab;
}
 
void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
{
    cmsCIELab Lab;
 
    Lab.L = Clamp_L_doubleV2(fLab ->L);
    Lab.a = Clamp_ab_doubleV2(fLab ->a);
    Lab.b = Clamp_ab_doubleV2(fLab ->b);
 
    wLab[0] = L2Fix2(Lab.L);
    wLab[1] = ab2Fix2(Lab.a);
    wLab[2] = ab2Fix2(Lab.b);
}
 
 
static
cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L)
{
    if (L < 0) L = 0;
    if (L > 100.0) L = 100.0;
 
    return L;
}
 
static
cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab)
{
    if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4;
    if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4;
 
    return ab;
}
 
static
cmsUInt16Number L2Fix4(cmsFloat64Number L)
{
    return _cmsQuickSaturateWord(L *  655.35);
}
 
static
cmsUInt16Number ab2Fix4(cmsFloat64Number ab)
{
    return _cmsQuickSaturateWord((ab + 128.0) * 257.0);
}
 
void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
{
    cmsCIELab Lab;
 
    Lab.L = Clamp_L_doubleV4(fLab ->L);
    Lab.a = Clamp_ab_doubleV4(fLab ->a);
    Lab.b = Clamp_ab_doubleV4(fLab ->b);
 
    wLab[0] = L2Fix4(Lab.L);
    wLab[1] = ab2Fix4(Lab.a);
    wLab[2] = ab2Fix4(Lab.b);
}
 
// Auxiliary: convert to Radians
static
cmsFloat64Number RADIANS(cmsFloat64Number deg)
{
    return (deg * M_PI) / 180.;
}
 
 
// Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0
static
cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b)
{
   cmsFloat64Number h;
 
   if (a == 0 && b == 0)
            h   = 0;
    else
            h = atan2(a, b);
 
    h *= (180. / M_PI);
 
    while (h > 360.)
        h -= 360.;
 
    while ( h < 0)
        h += 360.;
 
    return h;
}
 
 
// Auxiliary: Square
static
cmsFloat64Number Sqr(cmsFloat64Number v)
{
    return v *  v;
}
// From cylindrical coordinates. No check is performed, then negative values are allowed
void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab)
{
    LCh -> L = Lab -> L;
    LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5);
    LCh -> h = atan2deg(Lab ->b, Lab ->a);
}
 
 
// To cylindrical coordinates. No check is performed, then negative values are allowed
void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh)
{
    cmsFloat64Number h = (LCh -> h * M_PI) / 180.0;
 
    Lab -> L = LCh -> L;
    Lab -> a = LCh -> C * cos(h);
    Lab -> b = LCh -> C * sin(h);
}
 
// In XYZ All 3 components are encoded using 1.15 fixed point
static
cmsUInt16Number XYZ2Fix(cmsFloat64Number d)
{
    return _cmsQuickSaturateWord(d * 32768.0);
}
 
void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ)
{
    cmsCIEXYZ xyz;
 
    xyz.X = fXYZ -> X;
    xyz.Y = fXYZ -> Y;
    xyz.Z = fXYZ -> Z;
 
    // Clamp to encodeable values.
    if (xyz.Y <= 0) {
 
        xyz.X = 0;
        xyz.Y = 0;
        xyz.Z = 0;
    }
 
    if (xyz.X > MAX_ENCODEABLE_XYZ)
        xyz.X = MAX_ENCODEABLE_XYZ;
 
    if (xyz.X < 0)
        xyz.X = 0;
 
    if (xyz.Y > MAX_ENCODEABLE_XYZ)
        xyz.Y = MAX_ENCODEABLE_XYZ;
 
    if (xyz.Y < 0)
        xyz.Y = 0;
 
    if (xyz.Z > MAX_ENCODEABLE_XYZ)
        xyz.Z = MAX_ENCODEABLE_XYZ;
 
    if (xyz.Z < 0)
        xyz.Z = 0;
 
 
    XYZ[0] = XYZ2Fix(xyz.X);
    XYZ[1] = XYZ2Fix(xyz.Y);
    XYZ[2] = XYZ2Fix(xyz.Z);
}
 
 
//  To convert from Fixed 1.15 point to cmsFloat64Number
static
cmsFloat64Number XYZ2float(cmsUInt16Number v)
{
    cmsS15Fixed16Number fix32;
 
    // From 1.15 to 15.16
    fix32 = v << 1;
 
    // From fixed 15.16 to cmsFloat64Number
    return _cms15Fixed16toDouble(fix32);
}
 
 
void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3])
{
    fXYZ -> X = XYZ2float(XYZ[0]);
    fXYZ -> Y = XYZ2float(XYZ[1]);
    fXYZ -> Z = XYZ2float(XYZ[2]);
}
 
 
// Returns dE on two Lab values
cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
{
    cmsFloat64Number dL, da, db;
 
    dL = fabs(Lab1 -> L - Lab2 -> L);
    da = fabs(Lab1 -> a - Lab2 -> a);
    db = fabs(Lab1 -> b - Lab2 -> b);
 
    return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5);
}
 
 
// Return the CIE94 Delta E
cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
{
    cmsCIELCh LCh1, LCh2;
    cmsFloat64Number dE, dL, dC, dh, dhsq;
    cmsFloat64Number c12, sc, sh;
 
    dL = fabs(Lab1 ->L - Lab2 ->L);
 
    cmsLab2LCh(&LCh1, Lab1);
    cmsLab2LCh(&LCh2, Lab2);
 
    dC  = fabs(LCh1.C - LCh2.C);
    dE  = cmsDeltaE(Lab1, Lab2);
 
    dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
    if (dhsq < 0)
        dh = 0;
    else
        dh = pow(dhsq, 0.5);
 
    c12 = sqrt(LCh1.C * LCh2.C);
 
    sc = 1.0 + (0.048 * c12);
    sh = 1.0 + (0.014 * c12);
 
    return sqrt(Sqr(dL)  + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
}
 
 
// Auxiliary
static
cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab)
{
  cmsFloat64Number yt;
 
  if (Lab->L > 7.996969)
        yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
  else
        yt = 100 * (Lab->L / 903.3);
 
  return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6);
}
 
 
 
// bfd - gets BFD(1:1) difference between Lab1, Lab2
cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
{
    cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
        deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
    cmsCIELCh LCh1, LCh2;
 
 
    lbfd1 = ComputeLBFD(Lab1);
    lbfd2 = ComputeLBFD(Lab2);
    deltaL = lbfd2 - lbfd1;
 
    cmsLab2LCh(&LCh1, Lab1);
    cmsLab2LCh(&LCh2, Lab2);
 
    deltaC = LCh2.C - LCh1.C;
    AveC = (LCh1.C+LCh2.C)/2;
    Aveh = (LCh1.h+LCh2.h)/2;
 
    dE = cmsDeltaE(Lab1, Lab2);
 
    if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
        deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
    else
        deltah =0;
 
 
    dc   = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
    g    = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
    t    = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
           0.040*cos((2*Aveh-136)/(180/M_PI))+
           0.070*cos((3*Aveh-31)/(180/M_PI))+
           0.049*cos((4*Aveh+114)/(180/M_PI))-
           0.015*cos((5*Aveh-103)/(180/M_PI)));
 
    dh    = dc*(g*t+1-g);
    rh    = -0.260*cos((Aveh-308)/(180/M_PI))-
           0.379*cos((2*Aveh-160)/(180/M_PI))-
           0.636*cos((3*Aveh+254)/(180/M_PI))+
           0.226*cos((4*Aveh+140)/(180/M_PI))-
           0.194*cos((5*Aveh+280)/(180/M_PI));
 
    rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
    rt = rh*rc;
 
    bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
 
    return bfd;
}
 
 
//  cmc - CMC(l:c) difference between Lab1, Lab2
cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c)
{
  cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
  cmsCIELCh LCh1, LCh2;
 
  if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
 
  cmsLab2LCh(&LCh1, Lab1);
  cmsLab2LCh(&LCh2, Lab2);
 
 
  dL = Lab2->L-Lab1->L;
  dC = LCh2.C-LCh1.C;
 
  dE = cmsDeltaE(Lab1, Lab2);
 
  if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
            dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
  else
            dh =0;
 
  if ((LCh1.h > 164) && (LCh1.h < 345))
      t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
  else
      t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
 
   sc  = 0.0638   * LCh1.C / (1 + 0.0131  * LCh1.C) + 0.638;
   sl  = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
 
   if (Lab1->L<16)
         sl = 0.511;
 
   f   = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
   sh  = sc*(t*f+1-f);
   cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh));
 
   return cmc;
}
 
// dE2000 The weightings KL, KC and KH can be modified to reflect the relative
// importance of lightness, chroma and hue in different industrial applications
cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2,
                                  cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh)
{
    cmsFloat64Number L1  = Lab1->L;
    cmsFloat64Number a1  = Lab1->a;
    cmsFloat64Number b1  = Lab1->b;
    cmsFloat64Number C   = sqrt( Sqr(a1) + Sqr(b1) );
 
    cmsFloat64Number Ls = Lab2 ->L;
    cmsFloat64Number as = Lab2 ->a;
    cmsFloat64Number bs = Lab2 ->b;
    cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) );
 
    cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
 
    cmsFloat64Number a_p = (1 + G ) * a1;
    cmsFloat64Number b_p = b1;
    cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p));
    cmsFloat64Number h_p = atan2deg(b_p, a_p);
 
 
    cmsFloat64Number a_ps = (1 + G) * as;
    cmsFloat64Number b_ps = bs;
    cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
    cmsFloat64Number h_ps = atan2deg(b_ps, a_ps);
 
    cmsFloat64Number meanC_p =(C_p + C_ps) / 2;
 
    cmsFloat64Number hps_plus_hp  = h_ps + h_p;
    cmsFloat64Number hps_minus_hp = h_ps - h_p;
 
    cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 :
                            (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 :
                                                 (hps_plus_hp - 360)/2;
 
    cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ?  (hps_minus_hp + 360) :
                            (hps_minus_hp) > 180 ? (hps_minus_hp - 360) :
                                                    (hps_minus_hp);
    cmsFloat64Number delta_L = (Ls - L1);
    cmsFloat64Number delta_C = (C_ps - C_p );
 
 
    cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2);
 
    cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30))
                 + 0.24 * cos(RADIANS(2*meanh_p))
                 + 0.32 * cos(RADIANS(3*meanh_p + 6))
                 - 0.2  * cos(RADIANS(4*meanh_p - 63));
 
    cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
 
    cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2;
    cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
 
    cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
 
    cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
 
    cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc;
 
    cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
                            Sqr(delta_C/(Sc * Kc))  +
                            Sqr(delta_H/(Sh * Kh))  +
                            Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
 
    return deltaE00;
}
 
// This function returns a number of gridpoints to be used as LUT table. It assumes same number
// of gripdpoints in all dimensions. Flags may override the choice.
cmsUInt32Number CMSEXPORT _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags)
{
    cmsUInt32Number nChannels;
 
    // Already specified?
    if (dwFlags & 0x00FF0000) {
            // Yes, grab'em
            return (dwFlags >> 16) & 0xFF;
    }
 
    nChannels = cmsChannelsOf(Colorspace);
 
    // HighResPrecalc is maximum resolution
    if (dwFlags & cmsFLAGS_HIGHRESPRECALC) {
 
        if (nChannels > 4)
                return 7;       // 7 for Hifi
 
        if (nChannels == 4)     // 23 for CMYK
                return 23;
 
        return 49;      // 49 for RGB and others
    }
 
 
    // LowResPrecal is lower resolution
    if (dwFlags & cmsFLAGS_LOWRESPRECALC) {
 
        if (nChannels > 4)
                return 6;       // 6 for more than 4 channels
 
        if (nChannels == 1)
                return 33;      // For monochrome
 
        return 17;              // 17 for remaining
    }
 
    // Default values
    if (nChannels > 4)
                return 7;       // 7 for Hifi
 
    if (nChannels == 4)
                return 17;      // 17 for CMYK
 
    return 33;                  // 33 for RGB
}
 
 
cmsBool  _cmsEndPointsBySpace(cmsColorSpaceSignature Space,
                             cmsUInt16Number **White,
                             cmsUInt16Number **Black,
                             cmsUInt32Number *nOutputs)
{
       // Only most common spaces
 
       static cmsUInt16Number RGBblack[4]  = { 0, 0, 0 };
       static cmsUInt16Number RGBwhite[4]  = { 0xffff, 0xffff, 0xffff };
       static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff };   // 400% of ink
       static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 };
       static cmsUInt16Number LABblack[4]  = { 0, 0x8080, 0x8080 };               // V4 Lab encoding
       static cmsUInt16Number LABwhite[4]  = { 0xFFFF, 0x8080, 0x8080 };
       static cmsUInt16Number CMYblack[4]  = { 0xffff, 0xffff, 0xffff };
       static cmsUInt16Number CMYwhite[4]  = { 0, 0, 0 };
       static cmsUInt16Number Grayblack[4] = { 0 };
       static cmsUInt16Number GrayWhite[4] = { 0xffff };
 
       switch (Space) {
 
       case cmsSigGrayData: if (White)    *White = GrayWhite;
                           if (Black)    *Black = Grayblack;
                           if (nOutputs) *nOutputs = 1;
                           return TRUE;
 
       case cmsSigRgbData:  if (White)    *White = RGBwhite;
                           if (Black)    *Black = RGBblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;
 
       case cmsSigLabData:  if (White)    *White = LABwhite;
                           if (Black)    *Black = LABblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;
 
       case cmsSigCmykData: if (White)    *White = CMYKwhite;
                           if (Black)    *Black = CMYKblack;
                           if (nOutputs) *nOutputs = 4;
                           return TRUE;
 
       case cmsSigCmyData:  if (White)    *White = CMYwhite;
                           if (Black)    *Black = CMYblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;
 
       default:;
       }
 
  return FALSE;
}
 
 
 
// Several utilities -------------------------------------------------------
 
// Translate from our colorspace to ICC representation
 
cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation)
{
       switch (OurNotation) {
 
       case 1:
       case PT_GRAY: return cmsSigGrayData;
 
       case 2:
       case PT_RGB:  return cmsSigRgbData;
 
       case PT_CMY:  return cmsSigCmyData;
       case PT_CMYK: return cmsSigCmykData;
       case PT_YCbCr:return cmsSigYCbCrData;
       case PT_YUV:  return cmsSigLuvData;
       case PT_XYZ:  return cmsSigXYZData;
 
       case PT_LabV2:
       case PT_Lab:  return cmsSigLabData;
 
       case PT_YUVK: return cmsSigLuvKData;
       case PT_HSV:  return cmsSigHsvData;
       case PT_HLS:  return cmsSigHlsData;
       case PT_Yxy:  return cmsSigYxyData;
 
       case PT_MCH1: return cmsSigMCH1Data;
       case PT_MCH2: return cmsSigMCH2Data;
       case PT_MCH3: return cmsSigMCH3Data;
       case PT_MCH4: return cmsSigMCH4Data;
       case PT_MCH5: return cmsSigMCH5Data;
       case PT_MCH6: return cmsSigMCH6Data;
       case PT_MCH7: return cmsSigMCH7Data;
       case PT_MCH8: return cmsSigMCH8Data;
 
       case PT_MCH9:  return cmsSigMCH9Data;
       case PT_MCH10: return cmsSigMCHAData;
       case PT_MCH11: return cmsSigMCHBData;
       case PT_MCH12: return cmsSigMCHCData;
       case PT_MCH13: return cmsSigMCHDData;
       case PT_MCH14: return cmsSigMCHEData;
       case PT_MCH15: return cmsSigMCHFData;
 
       default:  return (cmsColorSpaceSignature) 0;
       }
}
 
 
int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace)
{
    switch (ProfileSpace) {
 
    case cmsSigGrayData: return  PT_GRAY;
    case cmsSigRgbData:  return  PT_RGB;
    case cmsSigCmyData:  return  PT_CMY;
    case cmsSigCmykData: return  PT_CMYK;
    case cmsSigYCbCrData:return  PT_YCbCr;
    case cmsSigLuvData:  return  PT_YUV;
    case cmsSigXYZData:  return  PT_XYZ;
    case cmsSigLabData:  return  PT_Lab;
    case cmsSigLuvKData: return  PT_YUVK;
    case cmsSigHsvData:  return  PT_HSV;
    case cmsSigHlsData:  return  PT_HLS;
    case cmsSigYxyData:  return  PT_Yxy;
 
    case cmsSig1colorData:
    case cmsSigMCH1Data: return PT_MCH1;
 
    case cmsSig2colorData:
    case cmsSigMCH2Data: return PT_MCH2;
 
    case cmsSig3colorData:
    case cmsSigMCH3Data: return PT_MCH3;
 
    case cmsSig4colorData:
    case cmsSigMCH4Data: return PT_MCH4;
 
    case cmsSig5colorData:
    case cmsSigMCH5Data: return PT_MCH5;
 
    case cmsSig6colorData:
    case cmsSigMCH6Data: return PT_MCH6;
 
    case cmsSigMCH7Data:
    case cmsSig7colorData:return PT_MCH7;
 
    case cmsSigMCH8Data:
    case cmsSig8colorData:return PT_MCH8;
 
    case cmsSigMCH9Data:
    case cmsSig9colorData:return PT_MCH9;
 
    case cmsSigMCHAData:
    case cmsSig10colorData:return PT_MCH10;
 
    case cmsSigMCHBData:
    case cmsSig11colorData:return PT_MCH11;
 
    case cmsSigMCHCData:
    case cmsSig12colorData:return PT_MCH12;
 
    case cmsSigMCHDData:
    case cmsSig13colorData:return PT_MCH13;
 
    case cmsSigMCHEData:
    case cmsSig14colorData:return PT_MCH14;
 
    case cmsSigMCHFData:
    case cmsSig15colorData:return PT_MCH15;
 
    default:  return (cmsColorSpaceSignature) 0;
    }
}
 
 
cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace)
{
    switch (ColorSpace) {
 
    case cmsSigMCH1Data:
    case cmsSig1colorData:
    case cmsSigGrayData: return 1;
 
    case cmsSigMCH2Data:
    case cmsSig2colorData:  return 2;
 
    case cmsSigXYZData:
    case cmsSigLabData:
    case cmsSigLuvData:
    case cmsSigYCbCrData:
    case cmsSigYxyData:
    case cmsSigRgbData:
    case cmsSigHsvData:
    case cmsSigHlsData:
    case cmsSigCmyData:
    case cmsSigMCH3Data:
    case cmsSig3colorData:  return 3;
 
    case cmsSigLuvKData:
    case cmsSigCmykData:
    case cmsSigMCH4Data:
    case cmsSig4colorData:  return 4;
 
    case cmsSigMCH5Data:
    case cmsSig5colorData:  return 5;
 
    case cmsSigMCH6Data:
    case cmsSig6colorData:  return 6;
 
    case cmsSigMCH7Data:
    case cmsSig7colorData:  return  7;
 
    case cmsSigMCH8Data:
    case cmsSig8colorData:  return  8;
 
    case cmsSigMCH9Data:
    case cmsSig9colorData:  return  9;
 
    case cmsSigMCHAData:
    case cmsSig10colorData: return 10;
 
    case cmsSigMCHBData:
    case cmsSig11colorData: return 11;
 
    case cmsSigMCHCData:
    case cmsSig12colorData: return 12;
 
    case cmsSigMCHDData:
    case cmsSig13colorData: return 13;
 
    case cmsSigMCHEData:
    case cmsSig14colorData: return 14;
 
    case cmsSigMCHFData:
    case cmsSig15colorData: return 15;
 
    default: return 3;
    }
}

V1009 Check the array initialization. Only the first element is initialized explicitly. The rest elements are initialized with zeros.

V525 The code contains the collection of similar blocks. Check items 'L2float2', 'ab2float2', 'ab2float2' in lines 220, 221, 222.

V525 The code contains the collection of similar blocks. Check items 'L2float4', 'ab2float4', 'ab2float4' in lines 228, 229, 230.

V525 The code contains the collection of similar blocks. Check items 'Clamp_L_doubleV2', 'Clamp_ab_doubleV2', 'Clamp_ab_doubleV2' in lines 258, 259, 260.

V525 The code contains the collection of similar blocks. Check items 'L2Fix2', 'ab2Fix2', 'ab2Fix2' in lines 262, 263, 264.

V525 The code contains the collection of similar blocks. Check items 'Clamp_L_doubleV4', 'Clamp_ab_doubleV4', 'Clamp_ab_doubleV4' in lines 302, 303, 304.

V525 The code contains the collection of similar blocks. Check items 'L2Fix4', 'ab2Fix4', 'ab2Fix4' in lines 306, 307, 308.

V550 An odd precise comparison: a == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.

V550 An odd precise comparison: b == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.

V550 An odd precise comparison: Lab1->L == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.

V550 An odd precise comparison: Lab2->L == 0. It's probably better to use a comparison with defined precision: fabs(A - B) < Epsilon.